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LogD Estimation�MAGÁN ��





�MAGÁN ��Introduction�tj "Introduction"�





Lipohilicity is a physicochemical property that has attracted considerable interest in Medicinal Chemistry and  environmental sciences. Hydrophobic interactions with receptors, penetration across biological membranes during drug transport, as well  as toxic aspects of drug action underline the important role of lipophilicity in drug research1,2,3. On the other hand soil sorption, aquatic toxicity, bioaccumulation and biodegradation processes unravel the influential role of lipophilicity in the environmental fate of chemicals4,5. Octanol�water partition coefficient, used in its logarithmic form (logP) , is the most widely accepted measure of lipophilicity and refers to the partitioning of the same species of a substance between octanol and the aqueous phase6,7. However substances which contain ionogenic functions may exist as a mixture of the dissociated and undissociated forms at different pH values. In such cases the apparent partition coefficient or distribution coefficient D (mostly used as logD) is considered which refers to more complex  partitionning equilibria�JEGYZETHIV WATER_TESTA�1�,8.



The considerable limitations in partitionning experiments have led to the development of calculative approaches, which however are restricted to predictions of the partition coefficients of undissociated molecules9,10,11,12. In practice such predictions are of limited use since biological and chemical systems are characterized by different pH values and therefore distribution coefficients are more frequently demanded. 



To cover the necessity for  predictions of the distribution coefficient at any pH, a program module called PrologD has been developed, which is a part of the Pallas program. (Pallas integrates modules that predict physicochemical parameters from structure) .





�MAGÁN ��Theoretical Section�tj "Theoretical Section"�



�MAGÁN ��Microspecies�tj "Microspecies"��tm "Microspecies"�



Several microspecies of a compound may exist in a protic solvent. As an example the protonation scheme of aspartic acid is shown in �SORSZÁM Figure MICROSPECIES�Figure 1.1�.

	

�

Figure 1.�SORSZÁM Figure  \* ARAB�2� The protonation scheme of aspartic acid



As PrologD calculates the dissociation and partition coefficients of the microspecies, we have to express the distribution coefficient using these data. This section will explain a method of calculating logD from the constants of the microspecies. In the following section we describe a method of predicting the partition coefficient.



A compound containing N ionizable groups has 2N forms. This is discernible if we use binary numbers for indexing the microspecies of compounds. The M-th digit refers to the M-th ionizable group of the molecule (0ŁMŁN-1). If the group is protonated we use 1, otherwise 0. As there are 2N binary numbers having N digits, the number of  microspecies is 2N. �SORSZÁM Figure INDEXEDSPECIES�Figure 1.2� shows the protonation scheme of aspartic acid using binary indexing.

	

�

Figure 1.�SORSZÁM Figure  \* ARAB�3� The protonation scheme of a triprotic compound using binary indexing



where si refers to the i-th microspecies (small letters will be used for the indices and constants of microspecies and capital letters for the macrospecies). 



�MAGÁN ��Microconstants�tj "Microconstants"��tm "Microconstants"�



The equilibrium between species i and j can be described by eqn. �SORSZÁM Equation MICROCONSTANT�[1.1]�.



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r1�1�]

where aH  is the activity of H+, the binary forms of i and j are the same except that there is one more 1 in  j than in i, and there exists an M (0ŁMŁN-1) such that j=i+2M, ki,,j is the equilibrium constant for the protonation process from si to sj. (ki,j  values are called microconstants), and ai  and aj are the activities of si and sj, respectively. (For example if N=3 and i=1012=5 then  j may be 0012=1 or 1002=4. If j=1 then M=2, if j=4 then M=0)



The microspecies can be classified according to the number of their protonated groups, which is equal to the number of 1 digits in the binary form of their indices. Species with the same net charges will be in the same class. Then we get N+1 macrospecies, each containing (N�ELTOLÁS \L 3.60�I ) microspecies, where I is the index of the macrospecies (0ŁIŁN), referring to the number of protonated groups (capital letters are used for the indices and constants of macrospecies). Every microspecies in class I (1ŁIŁN) can be derived from I different microspecies of class I-1 by protonation. So, the number of all microconstants (n) can be obtained as follows:



	
�BEÁGYAZÁS Equation.2
�
�
�
	[1.�SORSZÁM Equation  \* ARAB  \r2�2�]

The protonation process can be represented by a directed graph as seen in �SORSZÁM Figure MICROSPECIES�Figure 1.1� and �SORSZÁM Figure INDEXEDSPECIES�Figure 1.2�. The vertices of the graph are the microspecies and the arrows are the protonation processes between the given species. Using the microconstants the activity of any of the microspecies can be calculated from a0, the activity of the unprotonated form. To decrease the number of microconstants, instead of the whole graph of the protonation scheme we can use one of its spanning trees to represent the protonation process. This tree contains only a subset of the arrows of the original graph, so that all vertices can be visited from vertice s0 on exactly one path.  To obtain the tree, let's apply the following indexing of the microconstants.



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r3�3�]

where 1ŁiŁ2N-1 and i' is created by replacing the leftmost 1 digit of the binary form of i with 0 (e.g. if i=010112 then i'=000112). This way we get 2N-1 indices and the same number of microconstants. On �SORSZÁM Figure KI�Figure 1.3� the arrow from si' to si  represent ki.

	

�

Figure 1.�SORSZÁM Figure  \* ARAB�4� Simplified protonation scheme of a triprotic compound



Any ai (0ŁiŁ2N-1) values can be calculated using this subset from a0 in the following way:



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r4�4�]

where M(i) is the number of 1 digits in the binary form of i (that is the index of the macrospecies containing microspecies i), mL(i) is created by replacing M(i)-L 1 digits with 0 from the left side of i [e.g. M(010112)=3, m0(010112)=000002=0, m1(010112)=000012=1, m2(010112)=000112=3, m3(010112)=010112=11].



Let's define the constant pi (0ŁiŁ2N-1) by eqns. �SORSZÁM Equation PII�[1.5]� and �SORSZÁM Equation PI0�[1.6]�.

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r5�5�]

So eqn. �SORSZÁM Equation AI�[1.4]� can be simplified to

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB�6�]

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r7�7�]

�MAGÁN ��The Calculation of Macroconstants and Macro Partition Coefficients Using Microconstants�tj "The Calculation of Macroconstants and Macro Partition Coefficients Using Microconstants"��tm "Macroconstants"��tm "Macro partition coefficients"�



As experimental determination of the microconstants (that PrologD can predict) is very difficult or impossible in most cases, it is more reasonable to convert them into macroconstants.  The sum of the activities of all microspecies bearing the same net charge is the activity of a macrospecies. So the definition of a macroconstant KI is



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r8�8�]

where KI is the I-th macroconstant (0ŁIŁN-1) (this value is the reciprocal of the Ka value), and AI and AIo are the activities of the macrospecies in the aqueous and organic phases, respectively.



Macroconstants can be expressed in terms microconstants. From eqn. �SORSZÁM Equation KI�[1.3], [1.8]� and �SORSZÁM Equation AIS�[1.7]� we get the following:

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r9�9�]



The partition constant of the microspecies is defined as

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r10�10�]

where pi  is the partition coefficient of species i (the prediction of pi will be detailed later), and ai , aio are the activities of species i in the aqueous and organic phases respectively. The partition coefficient of the macrospecies is then



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r11�11�]

PI-s can be expressed in terms of pi -s using eqn. �SORSZÁM Equation AIS�[1.7]�





	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r12�12�]





�MAGÁN ��Calculating the Distribution Coefficient�tj "Calculating the Distribution Coefficient"��tm "Distribution coefficient"�





Now we can express the distribution coefficient D from PI and KI values. The definition of D using macrospecies data is

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r13�13�]

Let's express D in terms of KI values instead of the activities of macrospecies.

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r14�14�]

PrologD uses eqn. �SORSZÁM Equation DCALC�[1.14]� for the calculation of D. As it can be seen, the method requires pi and ki values, which are predicted by the modules of PrologD. The prediction of pi values is described in the next section. The ki values of microconstants are predicted using Hammett�tm "Hammett equations"� and Taft�tm "Taft equations"� equations using ionic or neutral substituent constants.



�MAGÁN ��Prediction methods�tj "Prediction methods"�



�MAGÁN ��The Prediction of Microconstants�tj "The Prediction of Microconstants"��tm "Microconstants: prediction of"�



PrologD receives predicted logki  values from pKalc13, which is the pKa prediction module of Pallas. In pKalc logki values are calculated from Hammett equations for aromatic acids and bases and from Taft equations for aliphatic and alicyclic acids and bases14. The algorithm used is an implementation of the pKa prediction method described by Perrin et al.�JEGYZETHIV PERRIN�14�. The assumption is that free energy changes caused by substituents are approximately additive. The form of Hammett and Taft equations is



	
�
 
BEÁGYAZÁS 
Equation.2 
 
�
�
�
	[1.�SORSZÁM Equation  \* ARAB  \r15�15�]



where k is the given microconstant, k0 is the ionization constant for the parent compound (or protonation reaction center), r is a constant for the particular equilibrium (characteristic of the center), and s is a constant characteristic of a given substituent (neutral or ionized) on a given position for the reaction. PrologD contains a table which stores the logk0 and r values of the centers and tables of substituents which store s values. The table of centers is significantly increased by CompuDrug compared with the one published by Perrin et al.�JEGYZETHIV PERRIN�14� The program uses different substituent tables according to the type of the center, and the position of the substitution (ortho, meta, para, aliphatic). The center types are as follows:

-	centers connected to aliphatic parts of the molecule

	centers connected to an aromatic system

-		anilines

-		benzoic acids

-		phenols

-		pyridines

-		phosphoric acids



If a substituent is not connected directly to a Taft-type center, or to the aromatic system in the case of a Hammett-type center, the s value is calculated as a product of the s value retrieved from the table and an attenuation factor. In the case of condensed aromatic systems the Dewar-Grisdale method is applied�JEGYZETHIV PERRIN�14�. The distance of the substituent from the center is also taken into account (e.g. sCH2Cl=0.4sCl). The calculation method is detailed in ref.�JEGYZETHIV PERRIN�14�



Example: the prediction of the microconstants of 4-aminobutiric acid. (Values used in the prediction are taken from ref. �JEGYZETHIV PERRIN�14�):

	

�

Figure 1.�SORSZÁM Figure  \* ARAB�5�  The protonation scheme of 4�aminobutiric acid



Taft equations:

	logk0(RNH2 ® RNH3+) = 10.15 - 3.14Ss

	logk0(RCH2COO- ® RCH2COOH) = 4.16 - 0.67Ss



Substituent values:

	s(CH2NH2) = 0.5

	s(CH2CH2COOH) = 0.35

	s(CH2CH2COO-) = 0.02



The attenuation factor for a CH2 unit between a center and a substituent is 0.4.



Predictions of microconstants:

	logk01=logk(NH2(CH2)3COO- ® NH2(CH2)3COOH) = 4.16 - 0.67 0.4 0.5 = 4.03

	logk10=logk(NH2(CH2)3COO- ® NH3+(CH2)3COO-) = 10.15 - 3.14 0.4 0.02 =10.12

	logk11=logk(NH2(CH2)3COOH ® NH3+(CH2)3COOH) = 10.15 - 3.14 0.4 0.35 =9.71



�MAGÁN ��The Prediction of the Partition Coefficient of the Neutral Microspecies�tj "The Prediction of the Partition Coefficient of the Neutral Microspecies"��tm "Partition coefficient: prediction of"��tm "Neutral microspecies"�



The prediction of the partition coefficient of the neutral form of the compound (pneu) is based on the original works of Ghose et al.�JEGYZETHIV GHOSE�11�,15, Rekker et al.16 and Broto et al.�JEGYZETHIV BROTO�12�, and further developed by CompuDrug. The structural formula of the compound to be examined is fragmented into groups and interactions among these fragments are taken into account. The structure and the logP contribution values of the fragments are stored in a database. Logpneu is calculated as the sum of the contributions of the fragments and the interactions, based also on the supposition that substituents cause additive changes in free-energy.

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r16�16�]

where pneu is the partition coefficient of the neutral microspecies, n and m are the number of the type of fragments and interactions, respectively, that occur in the molecule, ai and bj are the incidences of fragment i and interaction j, respectively, and fi and Fj are the logP contributions of fragment i and interaction j, respectively. PrologD obtains the calculated logpneu values from  PrologP, the logP prediction module of Pallas.



Example: logpneu prediction of leucine ((CH3)2CHCH2CH(NH2)COOH) by Rekker's method

	

Fragmental values for leucine:

	f(CH) = 0.34, f(CH2) = 0.52, f(CH3) = 0.70,

	f(al.-COOH) = -0.95, f(al.-NH2) = -1.43



Correction term for polar groups separated by a carbon atom: 0.87



	logp(leucine) =	2f(CH) + f(CH2) + 2f(CH3) + f(al.-COOH) + f(al.-NH2) + 0.87 = 1.08



The Prediction of the Partition Coefficients of  �tm "Monovalent ions"�Monovalent Ions�tm "Partition coefficient: prediction of"�



The program calculates the logp values of the microspecies using the following formula:

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r17�17�]

where logpneu is the logarithm of the partition coefficient of the neutral form of the compound, and pq is a constant that is characteristic of the given microspecies. The ionized particles can exist in two forms: free ions or ion-pairs. PrologD presumes that the pairing ion is Na+ or K+ in the case of acids and Cl- in the case of bases. The partition coefficient of a monovalent ion in the presence of a pairing ion is the following:



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r18�18�]

where p is the partition coefficient of the ion when both the ionic and ion-paired species are considered, and aion and aip are the activities of the ionic and ion-paired species, respectively.



To express p in terms of partition coefficients of the ionic and ion-paired species, we need

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r19�19�]

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r20�20�]

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r21�21�]

where pion and pip are the partition coefficients  of the ion and the ion-pair, respectively,  Kip is the constant of ion-pair formation in the aqueous phase, and api is the activity of the pairing ion. Now eqn. �SORSZÁM Equation P�[1.18]� can be reformulated as

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r22�22�]



`

To avoid dividing by zero, eqn. �SORSZÁM Equation PPRE�[1.22]� can be rewritten as





	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r23�23�]

Dividing eqn. �SORSZÁM Equation PNOZERO�[1.23]� by the partition coefficient of the neutral microspecies (pneu) we get



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r24�24�]

where q=p/pneu, qion=pion/pneu and qip=pip/pneu. In PrologD it is supposed that qion and qip are constants for all monoprotic compounds. 



The equations estabilished for predicting the Kip of both monoprotic acids and bases is

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r25�25�]

where a, b, c and d are constants calculated by regression analysis, and k is the protonation constant (logk = pKa in the case of monoprotic substances). In eqn. �SORSZÁM Equation KIP�[1.25]� logpneu is supposed to be related to the polarity and logk to the nucleophilicity and electrophilicity of the ions. All of these properties have a significant effect on ion-pair formation.



To predict  qion, qip, a, b, c and d, we collected experimental logD data of monoprotic acids and bases from the literature17,18,19,20,21,22,23,24,25.  Monoprotic substances have two species: a neutral and an ionized. In that case micro- and macrospecies are the same. To determine the pq (-logq) values of the compounds, those logD values were considered which were determined at a pH where the substance was fully ionized, and the neutral species had no considerable effect on logD. This condition is fulfilled if pH ł pKa+4 in the case of acids, and if pH Ł pKa-4 in the case of bases. On such pH values logpneu-logD approximately equals to pq. It was also a requirement, that the pairing ion had to be Na+ or K+ for acids and Cl- for bases.



Eqn. �SORSZÁM Equation PQ�[1.26]� was created for determining the unknown parameters of eqns. �SORSZÁM Equation Q�[1.24]� and �SORSZÁM Equation KIP�[1.25]� by nonlinear regression:

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r26�26�]

To avoid overparametrization, qion and qip were determined outside the regression. It can be seen from eqn. �SORSZÁM Equation Q�[1.24]� that if api=0 then q=qion, and if api=Ą then q=qip. From the available experimental data of basic compounds measured in the absence of Cl-, pqion was calculated to be 4.4 (as the average of the pqion values of promazine, chlorpromazine and triflupromazine, which were 4.55, 4.47, 4.27, respectively�JEGYZETHIV MURTHY�17�). We found that the regression results were not very sensitive to the choice of pqip, so based on the experimental pq data we set pqip to 2 which was slightly below the minimum value of the experimental pq values. Using these qion and qip values, we obtained the following regression parameters: 



For acids:	a=-0.357(±0.033), b=0.946(±0.192), c=-0.0965(±0.0183), d=-1.130(±0.487)

		n=35, R=0.93, s=0.18, F=65.7



For bases:	a=-0.178(±0.027), b=-7.22(±0.669), c=0.396(±0.037), d=32.97(±2.92)

		n=33, R=0.96, s=0.16, F=127.8



The logk values of compounds in the training set were between 2.8 and 7.6, in the case of acids, and between 6.6 and 10.6 in the case of bases. The logp values were between 1.7 and 5.1, in the case of acids, and between -0.2 and 5.2 in the case of bases. Below and above these ranges the lowest and highest logk and logp values, respectively, are used in the application of eqn. �SORSZÁM Equation PQ�[1.26]�.







�MAGÁN ��The  Prediction of the Partition Coefficient of the Zwitterionic Species�tj "The  Prediction of the Partition Coefficient of the Zwitterionic Species"��tm "Zwitterionic species"��tm "Partition coefficient: prediction of"�



Zwitterionic compounds with one ionizable acidic and one ionizable basic group have four microspecies  (e.g. NH2�CH2�COOH, NH3+�CH2�COOH, NH2�CH2�COO-, NH3+�CH2�COO-). Parameters for  predicting the partition coefficient of the microspecies with both groups ionized (zwitterionic species) are also calculated by regression. Two k values determine the quantity of the zwitterionic species in a solution. kb corresponds to the deprotonation of the cationic group, and ka corresponds to the protonation of the anionic group.

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r27�27�]



	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r28�28�]

where AH-+, A-, and AH2+ refer to the zwitterionic, anionic and cationic microspecies, respectively.



If the isoelectric point (pI) is far enough from the logka and logkb values, then at pI the quantities of the neutral, cationic, and anionic species of the compound are negligible in both phases, and the logp of the zwitterionic species is close to logD, so the experimental pq values can be predicted as pq=logpneu�logD. We used the logD data of a-amino acids and dipeptides taken from literature26,27,28,29. 



The following equation  is used by PrologD for the prediction of pq:

	�BEÁGYAZÁS Equation.2���	[1.�SORSZÁM Equation  \* ARAB  \r29�29�]

where the a, b, c and d parameters were determined by linear regression:



	a=-0.151(±0.07), b=0.588(±0.070), c=0.407(±0.063), d=-2.93(±0.630)

	n=, R = 0.96, s=0.22, F=58.4



The logka values of compounds in the training set were between 1.8 and 4.3. The logkb values were between 7.7 and 10.8. The logpneu values were between -1.4 and 1.35. Below and above these ranges the lowest and the highest logka, logkb and logpneu values, respectively, are used by the program in the application of eqn. �SORSZÁM Equation PQZW�[1.29]�.



�MAGÁN ��Compounds with Several Ionizable Groups�tj "Compounds with Several Ionizable Groups"��tm "Partition coefficient: prediction of"�



In more complex cases, where several ionizable groups coexist on a molecule, the pq of the microspecies with several charges is calculated step by step. In each step the pq of a microspecies is calculated by eqns. �SORSZÁM Equation PQ�[1.26]� and �SORSZÁM Equation PQZW�[1.29]�, but instead of logpneu the logp value of another microspecies with one less number of charges is applied. The reliability of this calculation is not too high, but usually the lipophilicity of these species is extremely low.

�References



�Hardware and �tm "Software requirements"�Software Requirements



The following are the minimum requirements for using the Frame module of PALLAS:



-	You need a computer capable of running MS-Windows in 386 enhanced mode (80386 or later). The computer must have at least 4MB of RAM and a graphics display and adapter (Hercules, EGA, VGA, or better). A mouse or other pointing device is also required.



-	Windows 3.1 or later must be installed on your computer.



-	You need at least 3.5 MB of free disk space for the Frame module, and up to 1 MB for every prediction module.
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