******************************************************************************** ** FICHE F.5. QUATERNION PARAMETER PREDICTOR-CORRECTOR ALGORITHM ** ** This FORTRAN code is intended to illustrate points made in the text. ** ** To our knowledge it works correctly. However it is the responsibility of ** ** the user to test it, if it is to be used in a research application. ** ******************************************************************************** C ******************************************************************* C ** RIGID MOLECULE ROTATION USING QUATERNION PREDICTOR-CORRECTOR. ** C ** ** C ** REFERENCES: ** C ** ** C ** EVANS AND MURAD, MOLEC. PHYS. 34, 327, 1977. ** C ** GEAR, NUMERICAL INITIAL VALUE PROBLEMS IN ORDINARY ** C ** DIFFERENTIAL EQUATIONS, PRENTICE-HALL, 1971. ** C ** ** C ** SUPPLIED ROUTINES: ** C ** ** C ** SUBROUTINE PREDIC ( DT ) ** C ** PREDICTS POSITIONS, VELOCITIES ETC. AT NEXT STEP. ** C ** SUBROUTINE MOLATM ** C ** CONVERTS MOLECULAR COORDINATES TO ATOM POSITIONS. ** C ** SUBROUTINE ATMMOL ** C ** CONVERTS ATOMIC FORCES TO MOLECULAR FORCES AND TORQUES. ** C ** SUBROUTINE CORREC ( DT, M, IXX, IYY, IZZ, K ) ** C ** CORRECTS POSITIONS, VELOCITIES ETC. ** C ** ** C ** PRINCIPAL VARIABLES: ** C ** ** C ** INTEGER N NUMBER OF MOLECULES ** C ** REAL DT TIMESTEP ** C ** REAL M MOLECULAR MASS ** C ** REAL IXX,IYY,IZZ PRINCIPAL INERTIAS ** C ** REAL K KINETIC ENERGY ** C ** REAL RX (N),RY (N),RZ (N) C-O-M POSITIONS ** C ** REAL RX1(N),RY1(N),RZ1(N) FIRST DERIVATIVES ** C ** REAL RX2(N),RY2(N),RZ2(N) SECOND DERIVATIVES ** C ** REAL RX3(N),RY3(N),RZ3(N) THIRD DERIVATIVES ** C ** REAL FX (N),FY (N),FZ (N) TOTAL FORCES ** C ** REAL QW (N),QX (N),QY (N),QZ (N) QUATERNION PARAMETERS ** C ** REAL QW1(N),QX1(N),QY1(N),QZ1(N) FIRST DERIVATIVES ** C ** REAL QW2(N),QX2(N),QY2(N),QZ2(N) SECOND DERIVATIVES ** C ** REAL QW3(N),QX3(N),QY3(N),QZ3(N) THIRD DERIVATIVES ** C ** REAL QW4(N),QX4(N),QY4(N),QZ4(N) FOURTH DERIVATIVES ** C ** REAL OX (N),OY (N),OZ (N) ANGULAR VELOCITIES ** C ** REAL OX1(N),OY1(N),OZ1(N) FIRST DERIVATIVES ** C ** REAL OX2(N),OY2(N),OZ2(N) SECOND DERIVATIVES ** C ** REAL OX3(N),OY3(N),OZ3(N) THIRD DERIVATIVES ** C ** REAL OX4(N),OY4(N),OZ4(N) FOURTH DERIVATIVES ** C ** REAL TX (N),TY (N),TZ (N) TOTAL TORQUES ** C ** ** C ** USAGE: ** C ** ** C ** THE PREDICTOR ROUTINE IS CALLED TO ADVANCE THE POSITIONS, ** C ** QUATERNIONS, AND ANGULAR VELOCITIES GIVEN THE CURRENT VALUES ** C ** OF THESE QUANTITIES AND THEIR SUCCESSIVE TIME DERIVATIVES. ** C ** FOLLOWING THIS, SUBROUTINE MOLATM USES THE QUATERNIONS TO ** C ** OBTAIN THE ATOM OR SITE POSITIONS RSX,RSY,RSZ. THESE ARE FED ** C ** INTO A FORCE ROUTINE (NOT SUPPLIED HERE) WHICH GIVES THE ** C ** FORCE ACTING ON EACH SITE OR ATOM. IN TURN, THESE ARE ** C ** CONVERTED INTO THE TOTAL FORCE AND TORQUE ACTING ON EACH ** C ** MOLECULE, BY SUBROUTINE ATMMOL, AND THESE ARE USED IN THE ** C ** CORRECTOR STAGE. ** C ******************************************************************* SUBROUTINE PREDIC ( DT ) COMMON / BLOCK1 / RX , RY , RZ , RX1, RY1, RZ1, : RX2, RY2, RZ2, RX3, RY3, RZ3, : FX , FY , FZ COMMON / BLOCK2 / QW , QX , QY , QZ , QW1, QX1, QY1, QZ1, : QW2, QX2, QY2, QZ2, QW3, QX3, QY3, QZ3, : QW4, QX4, QY4, QZ4, : OX , OY , OZ , OX1, OY1, OZ1, : OX2, OY2, OZ2, OX3, OY3, OZ3, : OX4, OY4, OZ4, TX, TY, TZ C ******************************************************************* C ** PREDICTOR ROUTINE ** C ** ** C ** WE ADOPT A 5-VALUE METHOD FOR REORIENTATIONAL VARIABLES ** C ** EMPLOYING BODY-FIXED ANGULAR VELOCITIES AND QUATERNIONS, ** C ** AND A 4-VALUE METHOD FOR CENTRE-OF-MASS (C-O-M) TRANSLATION. ** C ** THE PREDICTOR STAGE IS A SIMPLE TAYLOR SERIES. ** C ******************************************************************* INTEGER N PARAMETER ( N = 108 ) REAL DT REAL RX (N), RY (N), RZ (N) REAL RX1(N), RY1(N), RZ1(N) REAL RX2(N), RY2(N), RZ2(N) REAL RX3(N), RY3(N), RZ3(N) REAL FX (N), FY (N), FZ (N) REAL QW (N), QX (N), QY (N), QZ (N) REAL QW1(N), QX1(N), QY1(N), QZ1(N) REAL QW2(N), QX2(N), QY2(N), QZ2(N) REAL QW3(N), QX3(N), QY3(N), QZ3(N) REAL QW4(N), QX4(N), QY4(N), QZ4(N) REAL OX (N), OY (N), OZ (N) REAL OX1(N), OY1(N), OZ1(N) REAL OX2(N), OY2(N), OZ2(N) REAL OX3(N), OY3(N), OZ3(N) REAL OX4(N), OY4(N), OZ4(N) REAL TX (N), TY (N), TZ (N) INTEGER I REAL C1, C2, C3, C4 C ******************************************************************* C1 = DT C2 = C1 * DT / 2.0 C3 = C2 * DT / 3.0 C4 = C3 * DT / 4.0 DO 100 I = 1, N RX (I) = RX (I) + C1*RX1(I) + C2*RX2(I) + C3*RX3(I) RY (I) = RY (I) + C1*RY1(I) + C2*RY2(I) + C3*RY3(I) RZ (I) = RZ (I) + C1*RZ1(I) + C2*RZ2(I) + C3*RZ3(I) RX1(I) = RX1(I) + C1*RX2(I) + C2*RX3(I) RY1(I) = RY1(I) + C1*RY2(I) + C2*RY3(I) RZ1(I) = RZ1(I) + C1*RZ2(I) + C2*RZ3(I) RX2(I) = RX2(I) + C1*RX3(I) RY2(I) = RY2(I) + C1*RY3(I) RZ2(I) = RZ2(I) + C1*RZ3(I) QW(I) = QW(I) + C1*QW1(I) + C2*QW2(I) + C3*QW3(I) + C4*QW4(I) QX(I) = QX(I) + C1*QX1(I) + C2*QX2(I) + C3*QX3(I) + C4*QX4(I) QY(I) = QY(I) + C1*QY1(I) + C2*QY2(I) + C3*QY3(I) + C4*QY4(I) QZ(I) = QZ(I) + C1*QZ1(I) + C2*QZ2(I) + C3*QZ3(I) + C4*QZ4(I) QW1(I) = QW1(I) + C1*QW2(I) + C2*QW3(I) + C3*QW4(I) QX1(I) = QX1(I) + C1*QX2(I) + C2*QX3(I) + C3*QX4(I) QY1(I) = QY1(I) + C1*QY2(I) + C2*QY3(I) + C3*QY4(I) QZ1(I) = QZ1(I) + C1*QZ2(I) + C2*QZ3(I) + C3*QZ4(I) QW2(I) = QW2(I) + C1*QW3(I) + C2*QW4(I) QX2(I) = QX2(I) + C1*QX3(I) + C2*QX4(I) QY2(I) = QY2(I) + C1*QY3(I) + C2*QY4(I) QZ2(I) = QZ2(I) + C1*QZ3(I) + C2*QZ4(I) QW3(I) = QW3(I) + C1*QW4(I) QX3(I) = QX3(I) + C1*QX4(I) QY3(I) = QY3(I) + C1*QY4(I) QZ3(I) = QZ3(I) + C1*QZ4(I) OX(I) = OX(I) + C1*OX1(I) + C2*OX2(I) + C3*OX3(I) + C4*OX4(I) OY(I) = OY(I) + C1*OY1(I) + C2*OY2(I) + C3*OY3(I) + C4*OY4(I) OZ(I) = OZ(I) + C1*OZ1(I) + C2*OZ2(I) + C3*OZ3(I) + C4*OZ4(I) OX1(I) = OX1(I) + C1*OX2(I) + C2*OX3(I) + C3*OX4(I) OY1(I) = OY1(I) + C1*OY2(I) + C2*OY3(I) + C3*OY4(I) OZ1(I) = OZ1(I) + C1*OZ2(I) + C2*OZ3(I) + C3*OZ4(I) OX2(I) = OX2(I) + C1*OX3(I) + C2*OX4(I) OY2(I) = OY2(I) + C1*OY3(I) + C2*OY4(I) OZ2(I) = OZ2(I) + C1*OZ3(I) + C2*OZ4(I) OX3(I) = OX3(I) + C1*OX4(I) OY3(I) = OY3(I) + C1*OY4(I) OZ3(I) = OZ3(I) + C1*OZ4(I) 100 CONTINUE RETURN END SUBROUTINE MOLATM COMMON / BLOCK1 / RX , RY , RZ , RX1, RY1, RZ1, : RX2, RY2, RZ2, RX3, RY3, RZ3, : FX , FY , FZ COMMON / BLOCK2 / QW , QX , QY , QZ , QW1, QX1, QY1, QZ1, : QW2, QX2, QY2, QZ2, QW3, QX3, QY3, QZ3, : QW4, QX4, QY4, QZ4, : OX , OY , OZ , OX1, OY1, OZ1, : OX2, OY2, OZ2, OX3, OY3, OZ3, : OX4, OY4, OZ4, TX , TY , TZ COMMON / BLOCK3 / RSX, RSY, RSZ, FSX, FSY, FSZ COMMON / BLOCK4 / DX , DY , DZ C ******************************************************************* C ** CONVERSION OF MOLECULAR COORDINATES TO ATOM OR SITE POSITIONS ** C ** ** C ** PRINCIPAL VARIABLES: ** C ** ** C ** INTEGER N NUMBER OF MOLECULES ** C ** INTEGER NA NUMBER OF ATOMS PER MOL ** C ** REAL RSX(N,NA),RSY(N,NA),RSZ(N,NA) ATOM POSITIONS ** C ** REAL DX(NA),DY(NA),DZ(NA) ATOM POSITIONS IN MOLEC ** C ** REAL AXX,AXY,AXZ ETC. ROTATION MATRIX ** C ** THE VARIABLES DX,DY,DZ ARE ACTUALLY THE POSITION VECTORS OF ** C ** EACH ATOM IN THE MOLECULE RELATIVE TO THE CENTRE OF MASS IN ** C ** THE UNROTATED, BODY-FIXED, AXIS SYSTEM. ** C ** ** C ** USAGE: ** C ** ** C ** THE TRANSPOSE OF THE ROTATION MATRIX IS USED TO OBTAIN THE ** C ** POSITIONS OF EACH ATOM FROM THE CENTRE-OF-MASS POSITION AND ** C ** THE BODY-FIXED ATOM POSITION VECTORS (KNOWN FROM THE START). ** C ** THESE MAY THEN BE FED INTO THE FORCE ROUTINE. ** C ** FOR THIS EXAMPLE WE TAKE (NONLINEAR) TRIATOMIC MOLECULES. ** C ******************************************************************* INTEGER N PARAMETER ( N = 108 ) INTEGER NA PARAMETER ( NA = 3 ) REAL RX (N), RY (N), RZ (N) REAL RX1(N), RY1(N), RZ1(N) REAL RX2(N), RY2(N), RZ2(N) REAL RX3(N), RY3(N), RZ3(N) REAL FX (N), FY (N), FZ (N) REAL QW (N), QX (N), QY (N), QZ (N) REAL QW1(N), QX1(N), QY1(N), QZ1(N) REAL QW2(N), QX2(N), QY2(N), QZ2(N) REAL QW3(N), QX3(N), QY3(N), QZ3(N) REAL QW4(N), QX4(N), QY4(N), QZ4(N) REAL OX (N), OY (N), OZ (N) REAL OX1(N), OY1(N), OZ1(N) REAL OX2(N), OY2(N), OZ2(N) REAL OX3(N), OY3(N), OZ3(N) REAL OX4(N), OY4(N), OZ4(N) REAL TX (N), TY (N), TZ (N) REAL RSX(N,NA), RSY(N,NA), RSZ(N,NA) REAL FSX(N,NA), FSY(N,NA), FSZ(N,NA) REAL DX(NA), DY(NA), DZ(NA) INTEGER I, A REAL AXX, AXY, AXZ, AYX, AYY, AYZ, AZX, AZY, AZZ C ******************************************************************* C ** LOOP OVER ALL MOLECULES ** DO 200 I = 1, N C ** CALCULATE ROTATION MATRIX ELEMENTS ** AXX = QW(I) ** 2 + QX(I) ** 2 - QY(I) ** 2 - QZ(I) ** 2 AXY = 2.0 * ( QX(I) * QY(I) + QW(I) * QZ(I) ) AXZ = 2.0 * ( QX(I) * QZ(I) - QW(I) * QY(I) ) AYX = 2.0 * ( QX(I) * QY(I) - QW(I) * QZ(I) ) AYY = QW(I) ** 2 - QX(I) ** 2 + QY(I) ** 2 - QZ(I) ** 2 AYZ = 2.0 * ( QY(I) * QZ(I) + QW(I) * QX(I) ) AZX = 2.0 * ( QX(I) * QZ(I) + QW(I) * QY(I) ) AZY = 2.0 * ( QY(I) * QZ(I) - QW(I) * QX(I) ) AZZ = QW(I) ** 2 - QX(I) ** 2 - QY(I) ** 2 + QZ(I) ** 2 C ** LOOP OVER ALL SITES IN MOLECULE ** DO 199 A = 1, NA RSX(I,A) = RX(I) + AXX * DX(A) + AYX * DY(A) + AZX * DZ(A) RSY(I,A) = RY(I) + AXY * DX(A) + AYY * DY(A) + AZY * DZ(A) RSZ(I,A) = RZ(I) + AXZ * DX(A) + AYZ * DY(A) + AZZ * DZ(A) 199 CONTINUE 200 CONTINUE RETURN END SUBROUTINE ATMMOL COMMON / BLOCK1 / RX , RY , RZ , RX1, RY1, RZ1, : RX2, RY2, RZ2, RX3, RY3, RZ3, : FX , FY , FZ COMMON / BLOCK2 / QW , QX , QY , QZ , QW1, QX1, QY1, QZ1, : QW2, QX2, QY2, QZ2, QW3, QX3, QY3, QZ3, : QW4, QX4, QY4, QZ4, : OX , OY , OZ , OX1, OY1, OZ1, : OX2, OY2, OZ2, OX3, OY3, OZ3, : OX4, OY4, OZ4, TX, TY, TZ COMMON / BLOCK3 / RSX, RSY, RSZ, FSX, FSY, FSZ C ******************************************************************* C ** CONVERTS ATOMIC SITE FORCES TO MOLECULAR FORCE AND TORQUE. ** C ** ** C ** PRINCIPAL VARIABLES: ** C ** ** C ** INTEGER N NUMBER OF MOLECULES ** C ** INTEGER NA NUMBER OF ATOMS PER MOL ** C ** REAL RSX(N,NA),RSY(N,NA),RSZ(N,NA) ATOM POSITIONS ** C ** REAL FSX(N,NA),FSY(N,NA),FSZ(N,NA) ATOM FORCES ** C ** REAL AXX,AXY,AXZ ETC. ROTATION MATRIX ** C ** ** C ** USAGE: ** C ** ** C ** THE ROTATION MATRIX IS USED TO CONVERT THE TORQUES FROM ** C ** SPACE-FIXED TO BODY-FIXED AXES PRIOR TO THE CORRECTOR STEP ** C ******************************************************************* INTEGER N PARAMETER ( N = 108 ) INTEGER NA PARAMETER ( NA = 3 ) REAL RX (N), RY (N), RZ (N) REAL RX1(N), RY1(N), RZ1(N) REAL RX2(N), RY2(N), RZ2(N) REAL RX3(N), RY3(N), RZ3(N) REAL FX (N), FY (N), FZ (N) REAL QW (N), QX (N), QY (N), QZ (N) REAL QW1(N), QX1(N), QY1(N), QZ1(N) REAL QW2(N), QX2(N), QY2(N), QZ2(N) REAL QW3(N), QX3(N), QY3(N), QZ3(N) REAL QW4(N), QX4(N), QY4(N), QZ4(N) REAL OX (N), OY (N), OZ (N) REAL OX1(N), OY1(N), OZ1(N) REAL OX2(N), OY2(N), OZ2(N) REAL OX3(N), OY3(N), OZ3(N) REAL OX4(N), OY4(N), OZ4(N) REAL TX (N), TY (N), TZ (N) REAL RSX(N,NA), RSY(N,NA), RSZ(N,NA) REAL FSX(N,NA), FSY(N,NA), FSZ(N,NA) INTEGER I, A REAL AXX, AXY, AXZ, AYX, AYY, AYZ, AZX, AZY, AZZ REAL FXI, FYI, FZI, TXI, TYI, TZI REAL RXI, RYI, RZI, QWI, QXI, QYI, QZI REAL RSXIA, RSYIA, RSZIA, FSXIA, FSYIA, FSZIA C ******************************************************************* C ** LOOP OVER MOLECULES ** DO 300 I = 1, N FXI = 0.0 FYI = 0.0 FZI = 0.0 TXI = 0.0 TYI = 0.0 TZI = 0.0 RXI = RX(I) RYI = RY(I) RZI = RZ(I) QWI = QW(I) QXI = QX(I) QYI = QY(I) QZI = QZ(I) C ** LOOP OVER SITES IN A MOLECULE ** DO 299 A = 1, NA FSXIA = FSX(I,A) FSYIA = FSY(I,A) FSZIA = FSZ(I,A) RSXIA = RSX(I,A) - RXI RSYIA = RSY(I,A) - RYI RSZIA = RSZ(I,A) - RZI C ** TOTAL FORCE AND TORQUE CONTRIBUTIONS ** FXI = FXI + FSXIA FYI = FYI + FSYIA FZI = FZI + FSZIA TXI = TXI + RSYIA * FSZIA - RSZIA * FSYIA TYI = TYI + RSZIA * FSXIA - RSXIA * FSZIA TZI = TZI + RSXIA * FSYIA - RSYIA * FSXIA 299 CONTINUE C ** STORE TOTAL FORCE ** FX(I) = FXI FY(I) = FYI FZ(I) = FZI C ** CALCULATE ROTATION MATRIX ELEMENTS ** AXX = QWI ** 2 + QXI ** 2 - QYI ** 2 - QZI ** 2 AXY = 2.0 * ( QXI * QYI + QWI * QZI ) AXZ = 2.0 * ( QXI * QZI - QWI * QYI ) AYX = 2.0 * ( QXI * QYI - QWI * QZI ) AYY = QWI ** 2 - QXI ** 2 + QYI ** 2 - QZI ** 2 AYZ = 2.0 * ( QYI * QZI + QWI * QXI ) AZX = 2.0 * ( QXI * QZI + QWI * QYI ) AZY = 2.0 * ( QYI * QZI - QWI * QXI ) AZZ = QWI ** 2 - QXI ** 2 - QYI ** 2 + QZI ** 2 C ** CONVERT TORQUE TO BODY-FIXED COORDINATES ** TX(I) = AXX * TXI + AXY * TYI + AXZ * TZI TY(I) = AYX * TXI + AYY * TYI + AYZ * TZI TZ(I) = AZX * TXI + AZY * TYI + AZZ * TZI 300 CONTINUE RETURN END SUBROUTINE CORREC ( DT, M, IXX, IYY, IZZ, K ) COMMON / BLOCK1 / RX , RY , RZ , RX1, RY1, RZ1, : RX2, RY2, RZ2, RX3, RY3, RZ3, : FX , FY , FZ COMMON / BLOCK2 / QW , QX , QY , QZ , QW1, QX1, QY1, QZ1, : QW2, QX2, QY2, QZ2, QW3, QX3, QY3, QZ3, : QW4, QX4, QY4, QZ4, : OX , OY , OZ , OX1, OY1, OZ1, : OX2, OY2, OZ2, OX3, OY3, OZ3, : OX4, OY4, OZ4, TX, TY, TZ C ******************************************************************* C ** CORRECTS TRANSLATIONAL AND ROTATIONAL VARIABLES. ** C ** ** C ** THE CORRECTOR STAGE USES GEAR COEFFICIENTS (SEE REF ABOVE). ** C ** FOR TIMESTEP-SCALED VARIABLES THESE WOULD BE AS FOLLOWS. ** C ** FOR TRANSLATIONAL ALGORITHM, 4-VALUE METHOD, 2ND-ORDER D.E. ** C ** COEFFICIENTS ARE 1/6, 5/6, 1, 1/3 ** C ** FOR ROTATIONAL ALGORITHM, 5-VALUE METHOD, 1ST-ORDER D.E. ** C ** COEFFICIENTS ARE 251/720, 1, 11/12, 1/3, 1/24. ** C ** ** C ** PRINCIPAL VARIABLES: ** C ** ** C ** REAL GEART0, GEART1, GEART3 TRANSLATIONAL COEFFTS ** C ** REAL GEARR0, GEARR2, GEARR3, GEARR4 ROTATIONAL COEFFTS ** C ** ** C ** USAGE: ** C ** ** C ** THIS ROUTINE IS CALLED AFTER EVALUATION OF FORCES AND TORQUES ** C ** AND THE CONVERSION OF TORQUES INTO BODY-FIXED AXES. ** C ** IT ALSO RETURNS THE KINETIC ENERGY. ** C ******************************************************************* INTEGER N PARAMETER ( N = 108 ) REAL DT, M, IXX, IYY, IZZ, K REAL RX (N), RY (N), RZ (N) REAL RX1(N), RY1(N), RZ1(N) REAL RX2(N), RY2(N), RZ2(N) REAL RX3(N), RY3(N), RZ3(N) REAL FX (N), FY (N), FZ (N) REAL QW (N), QX (N), QY (N), QZ (N) REAL QW1(N), QX1(N), QY1(N), QZ1(N) REAL QW2(N), QX2(N), QY2(N), QZ2(N) REAL QW3(N), QX3(N), QY3(N), QZ3(N) REAL QW4(N), QX4(N), QY4(N), QZ4(N) REAL OX (N), OY (N), OZ (N) REAL OX1(N), OY1(N), OZ1(N) REAL OX2(N), OY2(N), OZ2(N) REAL OX3(N), OY3(N), OZ3(N) REAL OX4(N), OY4(N), OZ4(N) REAL TX (N), TY (N), TZ (N) INTEGER I REAL C1, C2, C3, C4 REAL CORRW, CORRX, CORRY, CORRZ REAL RX2I, RY2I, RZ2I REAL QW1I, QX1I, QY1I, QZ1I, OX1I, OY1I, OZ1I REAL CTRAN0, CTRAN1, CTRAN3 REAL CROT0, CROT2, CROT3, CROT4 REAL GEART0, GEART1, GEART3 PARAMETER ( GEART0 = 1.0 / 6.0, : GEART1 = 5.0 / 6.0, : GEART3 = 1.0 / 3.0 ) REAL GEARR0, GEARR2, GEARR3, GEARR4 PARAMETER ( GEARR0 = 251.0 / 720.0, : GEARR2 = 11.0 / 12.0, : GEARR3 = 1.0 / 3.0, : GEARR4 = 1.0 / 24.0 ) C ******************************************************************* C1 = DT C2 = C1 * DT / 2.0 C3 = C2 * DT / 3.0 C4 = C3 * DT / 4.0 CTRAN0 = GEART0 * C2 CTRAN1 = GEART1 * C2 / C1 CTRAN3 = GEART3 * C2 / C3 CROT0 = GEARR0 * C1 CROT2 = GEARR2 * C1 / C2 CROT3 = GEARR3 * C1 / C3 CROT4 = GEARR4 * C1 / C4 DO 400 I = 1, N RX2I = FX(I) / M RY2I = FY(I) / M RZ2I = FZ(I) / M CORRX = RX2I - RX2(I) CORRY = RY2I - RY2(I) CORRZ = RZ2I - RZ2(I) RX (I) = RX (I) + CTRAN0 * CORRX RY (I) = RY (I) + CTRAN0 * CORRY RZ (I) = RZ (I) + CTRAN0 * CORRZ RX1(I) = RX1(I) + CTRAN1 * CORRX RY1(I) = RY1(I) + CTRAN1 * CORRY RZ1(I) = RZ1(I) + CTRAN1 * CORRZ RX2(I) = RX2I RY2(I) = RY2I RZ2(I) = RZ2I RX3(I) = RX3(I) + CTRAN3 * CORRX RY3(I) = RY3(I) + CTRAN3 * CORRY RZ3(I) = RZ3(I) + CTRAN3 * CORRZ K = K + M * ( RX1(I) ** 2 + RY1(I) ** 2 + RZ1(I) ** 2 ) QW1I = ( - QX(I)*OX(I) - QY(I)*OY(I) - QZ(I)*OZ(I) ) * 0.5 QX1I = ( QW(I)*OX(I) - QZ(I)*OY(I) + QY(I)*OZ(I) ) * 0.5 QY1I = ( QZ(I)*OX(I) + QW(I)*OY(I) - QX(I)*OZ(I) ) * 0.5 QZ1I = ( - QY(I)*OX(I) + QX(I)*OY(I) + QW(I)*OZ(I) ) * 0.5 CORRW = QW1I - QW1(I) CORRX = QX1I - QX1(I) CORRY = QY1I - QY1(I) CORRZ = QZ1I - QZ1(I) QW (I) = QW (I) + CROT0 * CORRW QX (I) = QX (I) + CROT0 * CORRX QY (I) = QY (I) + CROT0 * CORRY QZ (I) = QZ (I) + CROT0 * CORRZ QW1(I) = QW1I QX1(I) = QX1I QY1(I) = QY1I QZ1(I) = QZ1I QW2(I) = QW2(I) + CROT2 * CORRW QX2(I) = QX2(I) + CROT2 * CORRX QY2(I) = QY2(I) + CROT2 * CORRY QZ2(I) = QZ2(I) + CROT2 * CORRZ QW3(I) = QW3(I) + CROT3 * CORRW QX3(I) = QX3(I) + CROT3 * CORRX QY3(I) = QY3(I) + CROT3 * CORRY QZ3(I) = QZ3(I) + CROT3 * CORRZ QW4(I) = QW4(I) + CROT4 * CORRW QX4(I) = QX4(I) + CROT4 * CORRX QY4(I) = QY4(I) + CROT4 * CORRY QZ4(I) = QZ4(I) + CROT4 * CORRZ OX1I = ( TX(I) + OY(I) * OZ(I) * (IYY-IZZ) ) / IXX OY1I = ( TY(I) + OZ(I) * OX(I) * (IZZ-IXX) ) / IYY OZ1I = ( TZ(I) + OX(I) * OY(I) * (IXX-IYY) ) / IZZ CORRX = OX1I - OX1(I) CORRY = OY1I - OY1(I) CORRZ = OZ1I - OZ1(I) OX (I) = OX (I) + CROT0 * CORRX OY (I) = OY (I) + CROT0 * CORRY OZ (I) = OZ (I) + CROT0 * CORRZ OX1(I) = OX1I OY1(I) = OY1I OZ1(I) = OZ1I OX2(I) = OX2(I) + CROT2 * CORRX OY2(I) = OY2(I) + CROT2 * CORRY OZ2(I) = OZ2(I) + CROT2 * CORRZ OX3(I) = OX3(I) + CROT3 * CORRX OY3(I) = OY3(I) + CROT3 * CORRY OZ3(I) = OZ3(I) + CROT3 * CORRZ OX4(I) = OX4(I) + CROT4 * CORRX OY4(I) = OY4(I) + CROT4 * CORRY OZ4(I) = OZ4(I) + CROT4 * CORRZ K = K + IXX * OX(I) ** 2 : + IYY * OY(I) ** 2 : + IZZ * OZ(I) ** 2 400 CONTINUE K = 0.5 * K RETURN END