Re: CCL:Paramagnetically shifted 1H NMR spectra



Dear Dauoglas Fox and other Netters who responded me during last days
 concerning calculations of paramagnetically shifted 1H NMR spectra
 possessing up to 135 ppm values.
 During last days I clearified that for large (100 ppm) paramagnetic
 1H shifts are responsible not good basis sets (only few ppm) and not
 electron correlations (only tens ppm) but including relativistic effects:
 'electron spin-orbit', 'electron spin-spin', and 'electron spin - proton
 spin', etc. couplings. I do not know what relativism it is included in DALTON
 and DIRAC packages (maybe here can respond experts from these teams) but
 for my opinion if it is included 'electron spin - proton spin' coupling
 that should give these 100 ppm paramagnetic shifts in 1H NMR spectra.
 Maybe in other programs people are doing such a inclusions of
 'electron spin - proton spin couplings'?
 I would be appreciate if somebody will allow me to perform trial calculations
 of biliverdin CuOEB molecule 1H NMR spectrum using DALTON, DIRAC or other
 program with implemented as much as possible relativistic effects.
 Thanking your in advance for further discussions and advises.
 Yours sincerely, Arvydas Tamulis
 Enclosed please find X-Ray geometry of CuOEB molecule in Angstroms:
  Cu1                   0.        0.        0.
  O2                    0.2239   -2.96653  -1.55039
  N3                    1.38133  -1.33544  -0.35323
  N4                    1.38119   1.34207   0.36885
  C5                    1.22628  -2.58553  -0.97483
  C6                    2.51385  -3.33756  -0.86868
  C7                    3.37827  -2.55016  -0.22896
  C8                    2.67395  -1.28282   0.09472
  C9                    3.26426  -0.17877   0.65202
  C10                   2.68854   1.08761   0.70813
  C11                   3.38244   2.34651   0.96318
  C12                   2.50269   3.34699   0.72477
  C13                   1.25013   2.71593   0.35196
  C14                   0.0751    3.37078   0.
  C15                   2.68652  -4.68205  -1.49633
  C16                   3.05674  -4.56912  -2.96369
  C17                   4.84657  -2.77602   0.04178
  C18                   5.72923  -2.08939  -1.00856
  C19                   4.85471   2.43112   1.27447
  C20                   5.69449   2.34802   0.0041
  C21                   2.72592   4.83225   0.72854
  C22                   2.87181   5.41601  -0.67222
  H23                   4.13917  -0.29105   1.00274
  H24                   0.09707   4.35684   0.
  H25                   1.8737   -5.18468  -1.40342
  H26                   3.37402  -5.20107  -1.07412
  H27                   3.13618  -5.45897  -3.37019
  H28                   2.36288  -4.06322  -3.3895
  H29                   3.87718  -4.07992  -3.05734
  H30                   5.00432  -3.74715   0.00503
  H31                   5.07799  -2.46117   0.91361
  H32                   6.64112  -2.28581  -0.82449
  H33                   5.51113  -2.4159   -1.88189
  H34                   5.58593  -1.11668  -0.96462
  H35                   5.10459   1.68705   1.84642
  H36                   5.03303   3.27735   1.73233
  H37                   6.61722   2.41078   0.21711
  H38                   5.52484   1.4978   -0.44582
  H39                   5.45344   3.10135  -0.56135
  H40                   3.50226   5.01567   1.24612
  H41                   1.98737   5.25961   1.1645
  H42                   3.01354   6.38803  -0.58859
  H43                   3.62122   5.00544  -1.10604
  H44                   2.09038   5.25163  -1.1876
  N45                  -1.43943  -1.27259   0.35323
  N46                  -1.32005   1.40226  -0.36885
  C47                  -1.12793   2.76892  -0.35196
  C48                  -1.34022  -2.52835   0.97483
  C49                  -2.72843  -1.16245  -0.09472
  C50                  -2.63743   1.20627  -0.70813
  C51                  -2.35113   3.45514  -0.72477
  O52                  -0.3558   -2.95361   1.55039
  C54                  -2.66     -3.22228   0.86868
  C55                  -3.4885   -2.39716   0.22896
  C56                  -3.26899  -0.0332   -0.65201
  C57                  -3.27458   2.49484  -0.96318
  C58                  -2.50799   4.94886  -0.72854
  C59                  -2.89238  -4.55775   1.49633
  C60                  -4.9654   -2.5574   -0.04178
  H61                  -4.14802  -0.1064   -1.00274
  C62                  -4.74161   2.64493  -1.27447
  C63                  -2.62775   5.53854   0.67222
  H64                  -3.2754    5.16668  -1.24612
  H65                  -1.75115   5.34291  -1.1645
  C66                  -3.2572   -4.42844   2.96368
  H67                  -2.10276  -5.09608   1.40342
  H68                  -3.60232  -5.04563   1.07412
  C69                  -5.8166   -1.83214   1.00856
  H70                  -5.16625  -3.52054  -0.00503
  H71                  -5.18257  -2.23255  -0.91362
  C72                  -5.58426   2.59932  -0.0041
  H73                  -5.02439   1.91273  -1.84642
  H74                  -4.88207   3.49828  -1.73233
  H75                  -2.72604   6.51592   0.58859
  H76                  -3.3947    5.16177   1.10604
  H77                  -1.85441   5.33953   1.1876
  H78                  -3.37619  -5.31387   3.37019
  H79                  -2.5415   -3.95395   3.3895
  H80                  -4.05504  -3.90319   3.05734
  H81                  -6.73633  -1.98774   0.82449
  H82                  -5.61326  -2.16804   1.88189
  H83                  -5.63012  -0.86678   0.96462
  H84                  -6.50328   2.70312  -0.21711
  H85                  -5.45265   1.74239   0.44582
  H86                  -5.3099    3.34117   0.56135
 ***********************************************************
 >
 On Mon, 12 Feb 2001, Cust. Service Doug wrote:
 >
 >    Dr. Tamulis,
 >
 >    I don't have ready access to this journal at my office.  Can
 > you send the structure you used?  Have you verified that the
 > environment around these protons is reasonably described by this
 > input structure?
 >
 >    Generally the shifts in proton NMR calculations are good only to
 > about 10% which makes them less appropriate for structural studies
 > but the wide range you report from the experiment should be reproduced
 > at least qualitatively.
 >
 > >
 > > Dear Netters,
 > >
 > > We did not succeeded to calculate paramagnetically shifted 1H NMR
 spectrum
 > > of biliverdin molecule CuOEB using Gaussian 98 (see experimental data
 in
 > > J. Am. Chem.Soc., vol. 115, p. 12206 (1993)).
 > >
 > > We have optimized geometry of TeMeSilane molecule and obtained from
 NMR
 > > calculation the Isotropic Shielding values for H atoms (in ppm):
 > >
 > >    H    Isotropic =    31.9027   Anisotropy =     9.6413
 > >    XX=    29.4642   YX=     0.2951   ZX=    -0.7329
 > >    XY=     0.4642   YY=    32.9871   ZY=    -5.1492
 > >    XZ=    -0.8947   YZ=    -5.1015   ZZ=    33.2567
 > >    Eigenvalues:    27.9348    29.4430    38.3302
 > >
 > > We have used Density Functional Theory B3PW91/6-311G**
 > >
 > > We have taken geometry of CuOEB from X-Ray experiment.
 > > Our B3PW91\6-311G** calculated CuOEB NMR  Hm shielding values (ppm):
 > >  23  H    Isotropic =    28.4781   Anisotropy =    10.0683
 > >    XX=    24.0637   YX=    -1.2135   ZX=     -.8179
 > >    XY=     -.0906   YY=    35.1141   ZY=    -2.2717
 > >    XZ=     9.0739   YZ=     1.6948   ZZ=    26.2566
 > >    Eigenvalues:    20.8808    29.3633    35.1904
 > >
 > >  60  H    Isotropic =    27.5216   Anisotropy =    12.3793
 > >    XX=    22.4061   YX=     2.7621   ZX=    -1.0495
 > >    XY=     -.3733   YY=    35.4454   ZY=     2.7019
 > >    XZ=    10.0293   YZ=    -6.4196   ZZ=    24.7134
 > >    Eigenvalues:    18.6646    28.1258    35.7745
 > >
 > >  and shielding Hm' value:
 > > 24  H    Isotropic =    25.8868   Anisotropy =    16.3237
 > >    XX=    36.5750   YX=     -.6396   ZX=     4.7813
 > >    XY=     -.0379   YY=    23.9614   ZY=      .1694
 > >    XZ=     -.9100   YZ=     2.3766   ZZ=    17.1241
 > >    Eigenvalues:    16.7005    24.1907    36.7693
 > >
 > > It means that our calculated chemical shifts for Hm and Hm' are equal
 to
 > > few ppm while CuOEB experimental NMR chemical shift values for Hm and
 Hm' in
 > > J. Am. Chem.Soc., vol 115, p. 12206 are equal approximately to 135 ppm
 and
 > > -100 ppm.
 > >
 > > Why so badly we have calculated paramagnetically shifted 1H NMR
 spectrum
 > > for CuOEB molecule?
 > > Maybe GAUSSIAN is not able to calculate paramagnetically shifted 1H
 NMR
 > > spectra?
 > > Which program is suitable for calculations of paramagnetically shifted
 1H
 > > NMR spectra?
 > >
 > > Thanking your in advance.
 > > With best regards, Arvydas Tamulis & Jelena Tamuliene
 > > *******************************************************
 > >            Arvydas Tamulis
 > >
 > > Doctor of Natural Sciences, senior research fellow
 > >
 > > Institute of Theoretical Physics and Astronomy,
 > > Theoretical Molecular Electronics Research Group,
 > > A. Gostauto 12, Vilnius 2600, Lithuania
 > > e-mail: TAMULIS $#at#$ ITPA.lt; WEBsite: http://www.itpa.lt/~tamulis/
 > > fax: +(370-2)-225361  or  +(370-2)-224694
 > > Phone: +(370-2)-620861
 > > Home address: Didlaukio 27-40, Vilnius 2057, Lithuania
 > > Phone: +(370-2)-778743
 > >
 > >
 > >
 > >
 > >
 > >
 > > -= This is automatically added to each message by mailing script =-
 > > CHEMISTRY $#at#$ ccl.net -- To Everybody  | CHEMISTRY-REQUEST $#at#$
 ccl.net -- To Admins
 > > MAILSERV $#at#$ ccl.net -- HELP CHEMISTRY or HELP SEARCH
 > > CHEMISTRY-SEARCH $#at#$ ccl.net -- archive search    |    Gopher:
 gopher.ccl.net 70
 > > Ftp: ftp.ccl.net  |  WWW: http://www.ccl.net/chemistry/   | Jan: jkl $#at#$ ccl.net
 > >
 > >
 > >
 > >
 > >
 >
 >
 > --
 >
 >   Douglas J. Fox
 >   Technical Support
 >   Gaussian, Inc.
 >   help $#at#$ gaussian.com
 >
 >