PAGE
38

Program SYMPRJS and SYMPWS

Contents

21.
Prodats

82.
Conventions for Point Groups and Space Groups

183.
Program SYMPRJS

183.1
Description of the input

213.2
Formula, which has been programmed

223.3
Description of the program

303.4
Program proj_symprjs.m

324.
Program SYMPWS

324.1
Description of the input

344.2
Formula, which has been programmed

344.3
Description of the program

374.4
Program proj_sympws.m

395.
References

Programs SYMPRJS and SYMPWS
Authors Per-Olof Jansson, Esko Blokker and Stig Flodmark

2006-08-18
The SYMPRJS and SYMPWS Matlab programs calculates the symmetry projection matrices for the double space groups and thereby taking different spin directions into account. SYMPRJS and SYMPWS are functionally, largely based on the FORTRAN programs SYMPRJ and SYMPW (QCPE no. 259), which calculates the symmetry projection matrices for the single space groups.

1. Prodats
Program Prodats creates 7 output files which are stored on disc; to be read by SYMPRJS/SYMPWS.
prodats.dat is the input file for prodats.m execution.

After defining the variables and the files, the program reads the Euler angles of the first 24 elements of the double point group 2Oh into the matrix Oh(1:3,1:24). The inversion parameter, Oh(4,1:24), of these first 24 elements is set equal to 0, denoting that no inversion is involved. Euler angles for elements 25:48 are defined by Oh(1:4,25:48) = Oh(1:4,1:24) The Euler angles of the elements 49:96 of 2Oh are equal to the first 1:48, but the inversion parameter is set to equal to 1, denoting that the operations include inversion. The input angles are given in units of
[image: image1.wmf]p

, so the program multiplies the input angles by
[image: image2.wmf]p

 and then prints them, together with the inversion parameters.
Similarly the Euler angles and inversion parameters of the double point group 2D6h are read into D6h(1:3,1:12), extended to the set D6h(1:4,1:48) and printed.

Our conventions for Euler angles and enumeration of the point group elements are described in chapter ‎2.
The next input is the upper left quarter of the multiplication table of 2Oh, which is read into MOh(1:48,1:48). From this quarter the complete multiplication table MOh(1:96,1:96) is calculated and then printed.

The same procedure is followed for the multiplication table of 2D6h.

The multiplication tables are the same as in reference ‎[2], since we have enumerated the group elements in the same way.

The matrix npgo(1:2,1:36) is read, where npgo(1,1:36) contains the orders of the 36 point groups (36 and not 32, since some point groups are defined in two different ways). The enumeration of the point groups is the same as in Table 3 of chapter ‎2. npgo(2,K) contains the index that denotes where the elements of group K are stored in the matrix nge(1:736). Then the indices of each point group, as listed in chapter ‎2, Table 3, column 3, are read into nge(1:736). The elements of group K is read into nge(npgo(2,K):npgo(1,K)+npgo(2,K)-1).

Subsequently the program will calculate the rotation matrices
[image: image3.wmf])

,

,

(

i

i

i

l

y

q

f

D

 for
[image: image4.wmf]3

2,

1,

0,

=

l

 for all different rotations. For operations including inversion the matrices are multiplied by
[image: image5.wmf]l

)

1

(

-

.
All matrix elements
[image: image6.wmf])

2

,

1

(

L

L

D

l

 of group element I, for
[image: image7.wmf]3

2,

1,

0,

=

l

 are stored into matrix ldrmm(I,1:84).

The matrices
[image: image8.wmf])

1

(

1

=

l

D

 are also stored into rcgr3(1:3,1:3,I) for later use.

Our convention for spherical harmonics is the following:

[image: image9.wmf])

)

1

(cos

)

cos

((

sin

!

2

1

)

)!

(

)!

(

4

1

2

(

)

1

(

)

,

(

2

2

1

l

m

l

m

im

l

m

lm

d

d

e

l

m

l

m

l

l

Y

-

+

-

×

+

-

=

+

q

q

q

p

f

q

f

(1)

The rotations
[image: image10.wmf])

,

,

(

y

q

f

are represented in this basis by

[image: image11.wmf]×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

+

-

+

-

-

+

-

+

-

-

=

-

+

+

-

-

=

å

'

2

'

2

2

2

1

,

'

)

2

(sin

)

2

(cos

)!

'

(

!

)!

'

(

)!

(

)

)!

(

)!

(

)!

'

(

)!

'

((

)

1

(

)

,

,

(

2

1

m

m

m

m

l

m

m

l

m

m

m

l

m

l

m

l

m

l

m

l

m

l

D

k

k

k

k

k

k

q

q

k

k

k

k

y

q

f

[image: image12.wmf]y

f

im

im

e

e

-

-

'

(2)

and
[image: image13.wmf])

,

'

min(

),

'

,

0

max(

2

1

m

l

m

l

m

m

-

+

=

-

=

k

k

So if

[image: image14.wmf])

,...,

,

(

,

1

,

,

l

l

l

l

l

l

l

Y

Y

Y

+

-

-

=

Y

(3)

Then for a point group element
[image: image15.wmf])

,

,

,

(

l

y

q

f

P

, including rotation
[image: image16.wmf])

,

,

(

y

q

f

R

 and inversion
[image: image17.wmf]=

l

l

(

I

 0 or 1):

[image: image18.wmf])

,

,

(

)

1

(

)

,

,

,

(

y

q

f

l

y

q

f

l

D

Y

Y

l

l

l

l

P

-

=

(4)

The matrices
[image: image19.wmf]D

l

 are calculated by function dmatr. Since the highest value of
[image: image20.wmf]l

 is only 3, no recursive techniques have been used and formula (2) has been programmed, making use of the factorial function fac. The angles and the
[image: image21.wmf]D

3

0

-

matrices are printed.
The rotation of a function
[image: image22.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

=

z

y

x

z

y

x

r

z

z

z

))

,

,

((

)

(

_

 is defined as follows:

[image: image23.wmf])

)

,

,

((

)

(

)

(

_

1

_

R

R

1

z

y

x

z

y

x

r

R

r

P

R

z

z

z

z

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

=

-

-

(5)
By this we mean that the function
[image: image24.wmf]z

R

P

 has at point
[image: image25.wmf]_

r

 the same value as function
[image: image26.wmf]z

 at point
[image: image27.wmf]_

1

r

R

-

.
Consider the functions
[image: image28.wmf])

(

),

(

),

(

_

3

_

2

_

1

r

r

r

z

z

z

, defined as follows:

[image: image29.wmf]x

z

y

x

r

=

=

=

1

1

_

1

of

argument

first

the

))

,

,

((

)

(

z

z

z

(6a)

[image: image30.wmf]y

z

y

x

r

=

=

=

2

2

_

2

of

argument

second

the

))

,

,

((

)

(

z

z

z

(6b)

[image: image31.wmf]z

z

y

x

r

=

=

=

3

3

_

3

of

argument

 third

the

))

,

,

((

)

(

z

z

z

(6c)

Then

[image: image32.wmf]31

21

11

1

_

1

)

)

,

,

((

)

(

zR

yR

xR

z

y

x

r

P

R

+

+

=

=

R

z

z

(7a)

[image: image33.wmf]32

22

12

2

_

2

)

)

,

,

((

)

(

zR

yR

xR

z

y

x

r

P

R

+

+

=

=

R

z

z

(7b)

[image: image34.wmf]33

23

13

3

_

3

)

)

,

,

((

)

(

zR

yR

xR

z

y

x

r

P

R

+

+

=

=

R

z

z

(7c)

[image: image35.wmf]R

R

)

,

,

(

)

,

,

(

)

,

,

(

)

,

,

(

3

2

1

3

2

1

z

z

z

z

z

z

=

=

=

z

y

x

z

y

x

P

P

R

R

(8)
When we rotate a vector
[image: image36.wmf]_

a

, then its components change according to:

[image: image37.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

z

y

x

a

a

a

a

R

R

_

(9)

This equation is used in the second and third terms of (5). Now the functions
[image: image38.wmf]3

2

1

,

,

z

z

z

 are simple linear combinations of
[image: image39.wmf]1

,

1

0

,

1

1

,

1

,

,

Y

Y

Y

-

 and we can use this fact to calculate the rotation matrices R from the matrices
[image: image40.wmf]D

1

.

[image: image41.wmf]f

q

p

i

e

iy

x

r

Y

-

-

=

-

=

)

sin(

8

3

)

(

2

1

)

(

_

1

,

1

(10a)

[image: image42.wmf])

cos(

4

3

)

(

_

0

,

1

q

p

=

=

z

r

Y

(10b)

[image: image43.wmf]f

q

p

i

e

iy

x

r

Y

)

sin(

8

3

)

(

2

1

)

(

_

1

,

1

-

=

+

-

=

(10c)
In (10) we have restricted
[image: image44.wmf]_

r

 to the unit sphere. Then:

[image: image45.wmf]Q

Y

1

1

,

1

0

,

1

1

,

1

3

2

1

0

2

/

2

/

1

1

0

0

0

2

/

2

/

1

)

,

,

(

)

,

,

(

)

,

,

(

=

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

-

=

=

-

i

i

Y

Y

Y

z

y

x

z

z

z

(11)

[image: image46.wmf]DQ

Q

DQ

Y

Q

Y

1

1

1

1

1

)

,

,

(

)

,

,

(

-

=

=

=

z

y

x

P

z

y

x

P

R

R

(12)

So we conclude that:

[image: image47.wmf]Q

D

Q

R

)

,

,

(

)

,

,

(

1

1

y

q

f

y

q

f

-

=

(13)

The program calculates the rotation matrices this way.

The matrices
[image: image48.wmf]D

1

, which were stored in rcgr3(1:3,1:3,I), are all transformed by the
[image: image49.wmf]Q

 matrix and the result is stored into rgr3(1:3,1:3,I). These matrices are also printed.
Then the program produces the 100 smallest primes, larger than 3, by calling the function primen. The primes are stored in NP(1:100). They will be used in charac, a function called by the function Irrep. The primes are also printed.
To extend the program to higher values of
[image: image50.wmf]present)

at

;

3

(

max

=

l

l

, the dimension of ldrmm has to be changed to

[image: image51.wmf]å

=

+

max

0

2

)

)

1

2

(

:

1

,

144

:

1

(

l

l

l

ldrmm

and of matrix
[image: image52.wmf]D

 in function dmatr to
[image: image53.wmf])

1

2

,

1

2

(

max

max

+

+

l

l

D

. Further, statements have to be added, so that the matrices are stored correctly into ldrmm.
The spin matrices are calculated and stored in spinm(1:2,1:2,1:144). The matrix elements of the spin matrices are calculated according to the expression:

[image: image54.wmf](

)

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

=

+

-

-

-

+

-

2

cos

2

sin

2

sin

2

cos

,

,

)

(

2

1

)

(

2

1

)

(

2

1

)

(

2

1

'

2

/

1

q

q

q

q

y

q

f

f

y

f

y

f

y

f

y

i

i

i

i

s

s

e

e

e

e

D

After a proper execution; “Prodats has finished executing” is printed at the end of prodats execution.

See Figure 1 for the flowing scheme.
[image: image55.emf]prodats

Define files

Read Euler angles for

2

O

h

and

2

D

6h

and put

inversion parameters into OH(K,I), D6H(K,I)

Read multiplication tables of

2

O

h

,

2

D

6h

into MOH(K,I), MD6H(K,I)

Read npgo(K,I), read nge(L)

Calculate

l

D for all elements of

2

O

h

and

2

D

6h

for l = 0, 1, 2, 3. Store results into ldrmm(I,K).

Store

1

D into rcgr3.

Transform

1

Dby Qinto R. Store result into

rgr3(K,L,M).

Calculate primes NP(1:100).

Store rgr3in rgr3

Store ldrmmin ldrmm

Store npgoin npgo

Store ngein nge

Store mohin moh

Store md6hin md6h

Store NPin NP

Store spinmin spinm

Prodats has finished executing

Calculate the spin matrices spinm(1:2,1:2,1:144)

Figure 1: Flowing scheme of prodats

2. Conventions for Point Groups and Space Groups
The space group of a crystal with atomic positions
[image: image56.wmf]_

m

, is the maximal set of operators
[image: image57.wmf])

|

(

_

_

n

u

P

F

i

i

i

+

=

, which, when acting on the atomic positions, according to

[image: image58.wmf]2,...)

,

1

(

)

|

(

_

_

_

_

_

_

=

+

+

=

+

i

n

u

P

n

u

P

i

i

i

i

m

m

(14)

map the crystal onto itself.
[image: image59.wmf]i

P

 is a point group operator,
[image: image60.wmf]_

n

 is a primitive lattice vector and
[image: image61.wmf]i

u

_

 is a nonprimitive lattice vector. The point group operators
[image: image62.wmf]i

P

 of the space group form a point group.

The point group operators can be described by the Euler angles
[image: image63.wmf]i

i

i

y

q

f

,

,

 and the inversion label
[image: image64.wmf]i

l

, which is equal to 1 if inversion is included and equal to 0 if there is no inversion. So:

[image: image65.wmf])

,

,

,

(

i

i

i

i

i

P

l

y

q

f

=

(15)

We define the Euler angles as follows:
Start with a right-handed coordinate system x, y, z. All rotations will also be right-handed (counter-clockwise). First make a rotation
[image: image66.wmf]f

 through the z-axis. This produces a rotated coordinate system x’, y’, z’ from the original coordinate system. Then follows a rotation
[image: image67.wmf]q

 through the y’-axis, transforming (x’, y’, z’) into (x”, y”, z”). Finally follows a rotation
[image: image68.wmf]y

 through the z”-axis, transforming (x”, y”, z”) into (x”’, y”’, z”’). See Figure 2.

All point groups are subgroups of either point group 2Oh or point group 2D6h. We have written a list of the Euler angles of these point groups in Table 1 and Table 2. For the other point groups we denote which elements are included in each of them (Table 3). Our enumeration of the point group operators of 2Oh and 2D6h is the same as in reference ‎[2], but we have another definition of Euler angles.
In Table 1 we list also the transformation of the Cartesian coordinates x, y, z by the point group operators of 2Oh. For point group 2D6h this is done in Table 2.

Figure 3 shows the points to which point 1 are mapped by the application of the point group operators of 2Oh. Figure 4 shows the points into which point 1 is transformed by the application of the operators of group 2D6h. To this figure belongs a skew coordinate system (x, y, z). The z-axis is directed along a sixth-order axis and forms right angles with the x- and y-axes. Both of these point towards an edge of the prism and the angle between them is
[image: image69.wmf]3

/

2

p

.

[image: image70.emf]z, z’

z”, z”’

x

x’

x”

x”’

y”’

y’, y”

y







Figure 2: Definition of Euler angles

In Table 3 we list the point groups. In the first column we give the index number of the point group. In column two we give the name of the point group. In column three we give the point group operators (enumerated as in Table 1 and Table 2), which belong to this point group. In column four we give the names of the space groups, which have exactly this point group as their point group of the space group. We also give the index numbers of these space groups, according to the enumeration in reference ‎[3]. In order to obtain complete correspondence with these tables, we had to write some of the point groups in two isomorphic forms. This resulted in a total of 36 point groups. Some of the space groups in reference ‎[3] are given for two different systems of coordinates. For such groups we give an extra subscript 1 or 2, meaning the first or second setting in reference ‎[3] to this form of the point groups. So 2C63v,2 = 161 means that the second set of coordinate axes in reference ‎[3] for space group 2C63v, with space group index 161 corresponds to the given form of the point group. We write h(1,13) instead of h1, h13 and we write h(1-4) instead of h1, h2, h3, h4.
[image: image71.emf]x

y

z

1,25

65,89

9,33

61,85

5,29

69,93

22,46

54,78

50,74

18,42

14,38

58,8264,8812,36

68,92

4,28

19,43

51,75

15,39

59,83

72,96

8,32

55,79

23,47

53,77

21,45

13,37

57,81

17,41

49,73

70,94

6,30

2,26

66,90

62,86

10,34

16,40

60,84

20,44

52,76

56,80

24,48

11,35

67,91

3,27

63,87

7,31

71,95

Figure 3: The operations of double point group Oh
[image: image72.emf]1,1334,46

6,18

33,455,17

32,444,16

31,43

3,15

2,14

35,47

36,48

z

y

x

28,408,20

29,41

25,3711,23

26,38

12,24

10,22

30,42

9,21

27,39

7,19

Figure 4: The operations of double point group D6h
Table 1: Double point group operators of 2Oh
	Element
	Transformed Cartesian coordinates
	Euler angles

[image: image73.wmf]p

y

p

q

p

f

/

,

/

,

/

	Inversion

[image: image74.wmf]l

	Description of the double point group operation

	h1
	
[image: image75.wmf]z

y

x

	0 0 0
	0
	
[image: image76.wmf]tion

transforma

identity

	h2
	
[image: image77.wmf]_

_

z

y

x

	0 1 1
	0
	
[image: image78.wmf](1,0,0)

about

rotation

-

p

	h3
	
[image: image79.wmf]_

_

z

y

x

	0 1 0
	0
	
[image: image80.wmf](0,1,0)

about

rotation

-

p

	h4
	
[image: image81.wmf]z

y

_

_

x

	1 0 0
	0
	
[image: image82.wmf](0,0,1)

about

rotation

-

p

	h5
	
[image: image83.wmf] x

z

y

	3/2 3/2 0
	0
	
[image: image84.wmf](1,1,1)

3

/

4

about

rotation

-

p

	h6
	
[image: image85.wmf]_

_

x

z

y

	3/2 1/2 0
	0
	
[image: image86.wmf])

1

(1,1,

3

/

2

_

about

rotation

-

p

	h7
	
[image: image87.wmf]_

_

x

z

y

	1/2 1/2 0
	0
	
[image: image88.wmf],1,1)

1

(

3

/

2

_

about

rotation

-

p

	h8
	
[image: image89.wmf] x

z

y

_

_

	1/2 3/2 0
	0
	
[image: image90.wmf],1)

1

(1,

3

/

2

_

about

rotation

-

p

	h9
	
[image: image91.wmf]y

 x

z

	0 1/2 1/2
	0
	
[image: image92.wmf](1,1,1)

3

/

2

about

rotation

-

p

	h10
	
[image: image93.wmf]_

_

y

x

z

	0 1/2 3/2
	0
	
[image: image94.wmf],1)

1

(1,

3

/

4

_

about

rotation

-

p

	h11
	
[image: image95.wmf]_

_

y

 x

z

	0 3/2 1/2
	0
	
[image: image96.wmf])

1

(1,1,

3

/

4

_

about

rotation

-

p

	h12
	
[image: image97.wmf]y

_

_

x

z

	0 3/2 3/2
	0
	
[image: image98.wmf],1,1)

1

(

3

/

4

_

about

rotation

-

p

	h13
	
[image: image99.wmf]_

_

_

z

x

y

	1/2 1 0
	0
	
[image: image100.wmf],1,0)

1

(

_

about

rotation

-

p

	h14
	
[image: image101.wmf]z

x

y

_

	1/2 0 0
	0
	
[image: image102.wmf](0,0,1)

2

/

about

rotation

-

p

	h15
	
[image: image103.wmf]z

x

y

_

	3/2 0 0
	0
	
[image: image104.wmf](0,0,1)

2

/

3

about

rotation

-

p

	h16
	
[image: image105.wmf]_

 x

z

y

	3/2 1 0
	0
	
[image: image106.wmf](1,1,0)

about

rotation

-

p

	h17
	
[image: image107.wmf]_

_

_

x

y

z

	3/2 1/2 3/2
	0
	
[image: image108.wmf],1)

1

(0,

_

about

rotation

-

p

	h18
	
[image: image109.wmf]y

x

_

z

	1/2 1/2 1/2
	0
	
[image: image110.wmf](0,1,1)

about

rotation

-

p

	h19
	
[image: image111.wmf]y

z

x

_

	3/2 1/2 1/2
	0
	
[image: image112.wmf](1,0,0)

2

/

about

rotation

-

p

	h20
	
[image: image113.wmf]_

y

z

x

	3/2 3/2 1/2
	0
	
[image: image114.wmf](1,0,0)

2

/

3

about

rotation

-

p

	h21
	
[image: image115.wmf]_

_

_

x

y

z

	1 1/2 0
	0
	
[image: image116.wmf],0,1)

1

(

_

about

rotation

-

p

	h22
	
[image: image117.wmf]x

y

z

_

	0 3/2 0
	0
	
[image: image118.wmf](0,1,0)

2

/

3

about

rotation

-

p

	h23
	
[image: image119.wmf]x

y

z

_

	1 3/2 0
	0
	
[image: image120.wmf](1,0,1)

about

rotation

-

p

	h24
	
[image: image121.wmf]_

x

y

z

	0 1/2 0
	0
	
[image: image122.wmf](0,1,0)

2

/

about

rotation

-

p

	h24+i = hi for i=1…24
	
	
	

	h49
	
[image: image123.wmf]_

_

_

z

y

x

	0 0 0
	1
	
[image: image124.wmf]inversion

	h50
	
[image: image125.wmf]z

y

_

x

	0 1 1
	1
	
[image: image126.wmf])

0

,

0

,

1

(

plane

in

reflection

	h51
	
[image: image127.wmf]z

y

x

_

	0 1 0
	1
	
[image: image128.wmf])

0

,

1

,

0

(

plane

in

reflection

	h52
	
[image: image129.wmf]_

z

y

x

	1 0 0
	1
	
[image: image130.wmf])

1

,

0

,

0

(

plane

in

reflection

	h53
	
[image: image131.wmf]_

_

_

y

x

z

	3/2 3/2 0
	1
	
[image: image132.wmf].

)

1

,

1

,

1

(

3

/

4

inv

about

rotation

+

-

p

	h54
	
[image: image133.wmf]x

z

y

_

	3/2 1/2 0
	1
	
[image: image134.wmf].

)

1

,

1

,

1

(

3

/

2

_

inv

about

rotation

+

-

p

	h55
	
[image: image135.wmf]x

_

z

y

	1/2 1/2 0
	1
	
[image: image136.wmf].

)

1

,

1

,

1

(

3

/

2

_

inv

about

rotation

+

-

p

	h56
	
[image: image137.wmf]_

y

x

z

	1/2 3/2 0
	1
	
[image: image138.wmf].

)

1

,

1

,

1

(

3

/

2

_

inv

about

rotation

+

-

p

	h57
	
[image: image139.wmf]_

_

_

y

x

z

	0 1/2 1/2
	1
	
[image: image140.wmf].

)

1

,

1

,

1

(

3

/

2

inv

about

rotation

+

-

p

	h58
	
[image: image141.wmf]y

z

_

x

	0 1/2 3/2
	1
	
[image: image142.wmf].

)

1

,

1

,

1

(

3

/

4

_

inv

about

rotation

+

-

p

	h59
	
[image: image143.wmf]y

_

x

z

	0 3/2 1/2
	1
	
[image: image144.wmf].

)

1

,

1

,

1

(

3

/

4

_

inv

about

rotation

+

-

p

	h60
	
[image: image145.wmf]_

 x

z

y

	0 3/2 3/2
	1
	
[image: image146.wmf].

)

1

,

1

,

1

(

3

/

4

_

inv

about

rotation

+

-

p

	h61
	
[image: image147.wmf]z

y x

	1/2 1 0
	1
	
[image: image148.wmf])

0

,

1

,

1

(

_

plane

in

reflection

	h62
	
[image: image149.wmf]_

_

z

x

y

	1/2 0 0
	1
	
[image: image150.wmf])

1

,

0

,

0

(

2

/

3

about

rotation

mirror

-

p

	h63
	
[image: image151.wmf]_

_

z

x

y

	3/2 0 0
	1
	
[image: image152.wmf])

1

,

0

,

0

(

2

/

about

rotation

mirror

-

p

	h64
	
[image: image153.wmf]z

x

_

_

y

	3/2 1 0
	1
	
[image: image154.wmf])

0

,

1

,

1

(

plane

in

reflection

	h65
	
[image: image155.wmf]y

z

x

	3/2 1/2 3/2
	1
	
[image: image156.wmf])

1

,

1

,

0

(

_

plane

in

reflection

	h66
	
[image: image157.wmf]_

_

y

z

x

	1/2 1/2 1/2
	1
	
[image: image158.wmf])

1

,

1

,

0

(

plane

in

reflection

	h67
	
[image: image159.wmf]_

_

y

z

x

	3/2 1/2 1/2
	1
	
[image: image160.wmf])

0

,

0

,

1

(

2

/

3

about

rotation

mirror

-

p

	h68
	
[image: image161.wmf]y

z

x

_

_

	3/2 3/2 1/2
	1
	
[image: image162.wmf])

0

,

0

,

1

(

2

/

about

rotation

mirror

-

p

	h69
	
[image: image163.wmf]x

y

z

	1 1/2 0
	1
	
[image: image164.wmf])

1

,

0

,

1

(

_

plane

in

reflection

	h70
	
[image: image165.wmf]_

_

x

y

z

	0 3/2 0
	1
	
[image: image166.wmf])

0

,

1

,

0

(

2

/

about

rotation

mirror

-

p

	h71
	
[image: image167.wmf]_

_

x

y

z

	1 3/2 0
	1
	
[image: image168.wmf])

1

,

0

,

1

(

plane

in

reflection

	h72
	
[image: image169.wmf]x

y

z

_

_

	0 1/2 0
	1
	
[image: image170.wmf])

0

,

1

,

0

(

3

about

rotation

mirror

-

p

	h24+i = hi for i=49…72
	
	
	

Table 2: Double point group operators of 2D6h
	Element
	Transformed skew coordinates
	Euler angles

[image: image171.wmf]p

y

p

q

p

f

/

,

/

,

/

	Inversion

[image: image172.wmf]l

	Description of the double point group operation

	g1
	
[image: image173.wmf]z

y

x

	0 0 0
	0
	
[image: image174.wmf]tion

transforma

identity

	g2
	
[image: image175.wmf]z

x

y

x

-

	1/3 0 0
	0
	
[image: image176.wmf](0,0,1)

3

/

about

rotation

-

p

	g3
	
[image: image177.wmf]z

y

x

y

_

-

	2/3 0 0
	0
	
[image: image178.wmf](0,0,1)

3

/

2

about

rotation

-

p

	g4
	
[image: image179.wmf]z

y

_

_

x

	1 0 0
	0
	
[image: image180.wmf](0,0,1)

about

rotation

-

p

	g5
	
[image: image181.wmf]z

x

y-x

_

	4/3 0 0
	0
	
[image: image182.wmf](0,0,1)

3

/

4

about

rotation

-

p

	g6
	
[image: image183.wmf]x z

y y

-

	5/3 0 0
	0
	
[image: image184.wmf](0,0,1)

3

/

5

about

rotation

-

p

	g7
	
[image: image185.wmf]_

z

x

y

x

_

-

	1/3 1 0
	0
	
[image: image186.wmf](0,1,0)

about

rotation

-

p

	g8
	
[image: image187.wmf]_

_

_

z

x

y

	2/3 1 0
	0
	
[image: image188.wmf],0)

1

(1,

_

about

rotation

-

p

	g9
	
[image: image189.wmf]_

_

z

y

x-y

	1 1 0
	0
	
[image: image190.wmf](1,0,0)

about

rotation

-

p

	g10
	
[image: image191.wmf]_

z

x-y

x

	4/3 1 0
	0
	
[image: image192.wmf](2,1,0)

about

rotation

-

p

	g11
	
[image: image193.wmf]_

z

x

y

	5/3 1 0
	0
	
[image: image194.wmf](1,1,0)

about

rotation

-

p

	g12
	
[image: image195.wmf]_

z

y

y-x

	0 1 0
	0
	
[image: image196.wmf](1,2,0)

about

rotation

-

p

	g12+i = gi for i=1…12
	
	
	

	g25
	
[image: image197.wmf]_

_

_

z

y

x

	0 0 0
	1
	
[image: image198.wmf]inversion

	g26
	
[image: image199.wmf]_

_

z

x

x

y

-

	1/3 0 0
	1
	
[image: image200.wmf](0,0,1)

3

/

4

about

rotation

-

p

	g27
	
[image: image201.wmf]_

z

x

y

y

-

	2/3 0 0
	1
	
[image: image202.wmf](0,0,1)

3

/

5

about

rotation

-

p

	g28
	
[image: image203.wmf]_

z

y

x

	1 0 0
	1
	
[image: image204.wmf])

1

,

0

,

0

(

plane

in

reflection

	g29
	
[image: image205.wmf]_

z

x

y

x

-

	4/3 0 0
	1
	
[image: image206.wmf](0,0,1)

3

/

about

rotation

mirror

-

p

	g30
	
[image: image207.wmf]_

_

z

y

x

y

-

	5/3 0 0
	1
	
[image: image208.wmf](0,0,1)

3

/

2

about

rotation

mirror

-

p

	g31
	
[image: image209.wmf]_

z

y

x

x

-

	1/3 1 0
	1
	
[image: image210.wmf])

0

,

1

,

0

(

plane

in

reflection

	g32
	
[image: image211.wmf]z

x

y

	2/3 1 0
	1
	
[image: image212.wmf])

0

,

1

,

1

(

plane

in

reflection

	g33
	
[image: image213.wmf]z

x

y

y

-

	1 1 0
	1
	
[image: image214.wmf])

0

,

0

,

1

(

plane

in

reflection

	g34
	
[image: image215.wmf]z

x

y

x

_

-

	4/3 1 0
	1
	
[image: image216.wmf])

0

,

1

,

2

(

plane

in

reflection

	g35
	
[image: image217.wmf]z

x

y

_

_

	5/3 1 0
	1
	
[image: image218.wmf])

0

,

1

,

1

(

plane

in

reflection

	g36
	
[image: image219.wmf]z

y

y

x

_

-

	0 1 0
	1
	
[image: image220.wmf])

0

,

2

,

1

(

plane

in

reflection

	g12+i = gi for i=25…36
	
	
	

Table 3: The double point groups and the double space groups to which they belong

	Double point group index
	Double point group name
	Double point group operators, belonging to the double point group
	Names and labels of the double space groups to which this double point group belongs

	1
	2C1
	h(1,25)
	2C11 = 1

	2
	2Ci = 2S2
	h(1,13,25,37)
	2C1i = 2

	3
	2C2
	h(1,4,25,28)
	2C12,1 – 2C32,1 = 3-5

	4
	2Cs
	h(1,25,52,76)
	2C1s,1 – 2C4s,1 = 6-9

	5
	2C2h
	h(1,4,25,28,49,52,73,76)
	2C12h,1 – 2C62h,1 = 10-15

	6
	2D2
	h(1-4,25-28)
	2D12 – 2D92 = 16-24

	7
	2C2v
	h(1,4,25,28,50,51,74,75)
	2C12v – 2C222v = 25-46

	8
	2D2h
	h(1-4,25-28,49-52,73-76)
	2D12h – 2D282h = 47-74

	9
	2C4
	h(1,4,14,15,25,28,38,39)
	2C14 – 2C64 = 75-80

	10
	2S4
	h(1,4,25,28,62,63,86,87)
	2S14 = 81, 2S24 = 82

	11
	2C4h
	h(1,4,14,15,25,28,38,39,49,52,62,

 63,73,76,86,87)
	2C14h – 2C64h = 83-88

	12
	2D4
	h(1-4,13-16,25-28,37-40)
	2D14 – 2D104 = 89-98

	13
	2C4v
	h(1,4,14,15,25,28,38,39,50,51,61,

 64,74,75,85,88)
	2C14v – 2C124v = 99-110

	14
	2D2d
	h(1-4,25-28,61-64,85-88)
	2D12d – 2D122d = 111-122

	15
	2D4h
	h(1-4,13-16,25-28,37-40,49-52,
 61-64,73-76,85-88)
	2D14h – 2D204h = 123-142

	16
	2C3
	g(1,3,5,13,15,17)
	2C13 – 2C33 = 143-145, 2C43,2 = 146

	17
	2C3i = 2S6
	g(1,3,5,13,15,17,25,27,29,37,39,41)
	2C13i = 147, 2C23i = 148

	18
	2D3
	g(1,3,5,8,10,12,13,15,17,20,22,24)
	2D13 = 149, 2D33 = 151, 2D53 = 153

	19
	2D3
	g(1,3,5,7,9,11,13,15,17,19,21,23)
	2D23 = 150, 2D43 = 152, 2D63 = 154, 2D73,2 = 155

	20
	2C3v
	g(1,3,5,13,15,17,31,33,35,43,45,47)
	2C13v = 156, 2C33v = 158, 2C53v,2 = 160, 2C63v,2 = 161

	21
	2C3v
	g(1,3,5,13,15,17,32,34,36,44,46,48)
	2C23v = 157, 2C43v = 159

	22
	2D3d
	g(1,3,5,7,9,11,13,15,17,19,21,23,25

 27,29,31,33,35,37,39,41,43,45,47)
	2D33d = 164, 2D43d = 165, 2D53d = 166, 2D63d,2 = 167

	23
	2D3d
	g(1,3,5,8,10,12,13,15,17,20,22,24
 25,27,29,32,34,36,37,39,41,44,

 46,48)
	2D13d = 162, 2D23d = 163

	24
	2C6
	g(1-6,13-18)
	2C16 – 2C66 = 168-173

	25
	2C3h
	g(1,3,5,13,15,17,26,28,30,38,40,42)
	2C13h = 174

	26
	2C6h
	g(1-6,13-18,25-30,37-42)
	2C16h = 175, 2C26h = 176

	27
	2D6
	g(1-24)
	2D16 – 2D66 = 177-182

	28
	2C6v
	g(1-6,13-18,31-36,43-48)
	2C16v – 2C46v = 183-186

	29
	2D3h
	g(1,3,5,8,10,12,13,15,17,20,22,24,

 26,28,30,31,33,35,38,40,42,43,

 45,47)
	2D13h = 187, 2D23h = 188

	30
	2D3h
	g(1,3,5,7,9,11,13,15,17,19,21,23,26,

 28,30,32,34,36,38,40,42,44,46,

 48)
	2D33h = 189, 2D43h = 190

	31
	2D6h
	g(1-48)
	2D16h – 2D46h = 191-194

	32
	2T
	h(1-12,25-36)
	2T1 – 2T5 = 195-199

	33
	2Th
	h(1-12,25-36,49-60,73-84)
	2T1h – 2T7h = 200-206

	34
	2O
	h(1-48)
	2O1 – 2O8 = 207-214

	35
	2Td
	h(1-12,25-36,61-72,85-96)
	2T1d – 2T6d = 215-220

	36
	2Oh
	h(1-96)
	2O1h – 2O10h = 221-230

3. Program SYMPRJS

This is the main program, which calculates the coefficients to the spherical harmonics, so that these functions form irreducible bases for the given space group and wave vector.

This program uses all datasets prepared by program prodats.

3.1
Description of the input

The input to the program shall consist of a sequence of sets in the following order:

1. There shall be 20 logical 1’s (true) and 0’s (false). These logical parameters are read into an array steer(1:20) and the parameters steer the amount of output data that will be printed. See Table 4 for the meaning of steer(I) = ‘true’ or ‘false’ for each I.

Table 4: Conventions for input data steer

	I
	If steer(I) ~= 0
	If steer(I) == 0

	1
	The multiplication table is printed for each group for which the irreducible representations are calculated (function Irrep).
	No print

	2
	Calculate the irreducible representatives (function Irrep) and not only the irreducible characters. Using Irrep as a function of SYMPRJS/SYMPWS one should have steer(2) = ‘true’ in all cases.
	Calculate only the irreducible characters.

	3
	Print the inverse group elements (function inverse)
	No print.

	4
	Print the number of generators nmberg, the group indices of the generators ngen(I), the map map(1:G,1:2) by which each group element can be constructed as a product of generators (function genera). Print loop structure (function permu) of the group element with a unique eigenvalue (function repres).
	No print.

	5
	Print the number of classes and the group elements in each class (function classes).
	No print.

	6
	Print the table of primes (function primen). Print the exponent ex of the group, the prime P used in the calculations of the present group, Zprim, the used primitive root of unity modulus P, the characters as sums of roots of unity (function charac).
	No print.

	7
	Print the dimensions lj(1:ncl) of the irreducible representations and the irreducible characters ch(1:ncl,1:ncl) as complex numbers (function charac). Print the numbering of the irreducible representations (function repres).
	No print

	8
	Print the one-dimensional group representation (function repres).
	No print.

	9
	Print the irreducible representations of the group of dimension higher than one (function repres).
	No print.

	10
	Not used.
	No print.

	11
	In the input, steer(11) should always be “true”. This means that no error has occurred so far for this group. The program may change the value of the steer(11) if it detects an error.
	Stop execution for the present group and continue with the next wave vector, giving another group.

	12-17
	No effect. These parameters can be neglected or used for own purposes.
	No effect.

	18
	Print messages about the tests on a non-symmorphic space group.
	No print

	19
	Print the irreducible characters, where the irreducible representations are numbered in the same way the main output. When using SYMPRJS/SYMPWS, this output should be used to identify the irreducible representations, instead of that of steer(7).
	No print

	20
	The space group is symmorphic. Information to the program.
	Nonsymmorphic space group.

2. There shall follow three lines with three numbers each, defining the three rows of a matrix
[image: image221.wmf]A

. The matrix
[image: image222.wmf]A

 describes the primitive unit cell vectors
[image: image223.wmf]3

_

2

_

1

_

,

,

a

a

a

 according to
[image: image224.wmf]A

)

,

,

(

)

,

,

(

_

_

_

3

_

2

_

1

_

z

y

x

e

e

e

a

a

a

=

where
[image: image225.wmf])

,

,

(

_

_

_

z

y

x

e

e

e

 are the unit vectors in the Cartesian coordinate system.

3. Three numbers are read, pgnr, nel and lmax. pgnr is the index number of the point group which belongs to the space group, as described in section ‎2. The indices are given in Table 3, column 1. nel is the number of chemical elements in the crystal. lmax is the maximum value of orbital quantum number l, for which one wants to make calculations. Maximum value for lmax is 3.

4. There is a set of nel numbers, denoting the number of atoms per unit cell for each of the nel chemical elements. These numbers are stored into nat(1:nel).

5.
[image: image226.wmf]å

=

nel

I

I

nat

1

)

(

 triplets, each triplet containing the coordinates of one atom. First the atoms of chemical element no. 1, then the atoms of chemical element no. 2 etc. The integer atco in the first column informs the program about the coordinate system in which the coordinates are given. If atco = 1, the numbers are coordinates to the Cartesian vectors
[image: image227.wmf])

,

,

(

_

_

_

z

y

x

e

e

e

. If atco = 0 the numbers are coordinates to the lattice vectors
[image: image228.wmf])

,

,

(

3

_

2

_

1

_

a

a

a

.

6. This set of numbers must be given only for a nonsymmorphic space group. steer(20) must be set to ‘false’ (0) for a nonsymmorphic space group. If steer(20) = ‘true’ the program assumes that the space group is symmorphic and it will attempt to read the set of numbers in point 7, immediately after those of point 5.

For nonsymmorphic space groups the input should consist of order numbers, where order is the number of elements in the point group of the space group, the index of which (pgnr) was given as input earlier (point 3). The nth set should contain the nonprimitive translation associated with the nth point group element, where the point group elements are given in the order of Table 3, column 3.

For example, if pgnr = 9, the point group is 2C4 and there should be 8 sets if the space group is nonsymmorphic. Then the second set for example, should give the coordinates of the nonprimitive translation to the second point group operator, which according to Table 3 is h4. Table 1 informs that h4 is the rotation through angle
[image: image229.wmf]p

 about (0,0,1).

Even when there is no nonprimitive translation associated with a particular point group operator, it should be given as a zero vector, in order to obtain as many sets as there are point group operators and to have them in the required order. The integer uco in the first column of each set informs the program about the coordinate system in which the nonprimitive translations are given. uco = 1 means Cartesian coordinates. uco = 0 means lattice coordinates.

7. The number of
[image: image230.wmf]_

k

-vectors (number_of_wave_vectors) that follows shall be supplied. The following set contains the wave vectors
[image: image231.wmf]_

k

 for which the symmetry projection matrices will be calculated. Each set contains five numbers:

last, wvco, rk(1), rk(2), rk(3), nfacto

Here last = 1 means that this is the end of the input. For all wave vectors one should have last = 0

wvco = 1 means that the wave vector is given in Cartesian coordinates, wvco = 0 that it is given in reciprocal lattice coordinates
[image: image232.wmf])

,

,

(

3

_

2

_

1

_

b

b

b

 with

[image: image233.wmf])

(

_

_

_

_

_

_

k

j

i

k

j

i

a

a

a

a

a

b

´

×

´

=

The input coordinates should be given in units of
[image: image234.wmf]p

2

, since they are multiplied by
[image: image235.wmf]p

2

 as soon as they have been read.

The number nfacto must be set equal to zero if the symmetry projection should be done for only one wave vector in the same direction. Then the next wave vector set may follow immediately after this set.

If however, the symmetry projection should be repeated for several wave vectors with the same direction but different lengths, nfacto should be set equal to the number of such wave vectors (the first one included). In the case that nfacto > 0, there must be added a set of nfacto factors by which the given vector must be multiplied, in order to obtain the other wave vectors for which the symmetry adaptation should be made. The factors must be given in decreasing order and the first factor must be equal to 1. Then comes the set for the next wave vector.

The last set should contain the information last = 1 in the first column. A wave vector occurring in this set is not treated, the program stops executing after writing ‘SYMPRJS has finished executing’.

You will have to update the following statements in SYMPRJS.m:

read_inputdata = fopen('xx.dat','r');
where xx is the name of your ASCII input data file.

fid = fopen(‘yy.m','a');

where yy is the name of your .m output data file.

write_proj = fopen(‘zz','a');

where zz is the name of your binary output data file.

3.2
Formula, which has been programmed

We refer to references ‎[4] and ‎[5] for the theory, which leads to the following formula for the projection matrix.

[image: image236.wmf]s

s

G

u

P

m

m

l

l

F

n

k

i

dd

A

k

j

k

k

j

s

s

m

m

ll

cc

dd

k

j

D

D

e

u

P

g

l

S

c

'

2

/

1

)

,

(

)

|

(

'

)

,

,

(

*

_

'

'

'

)

,

,

(

)

,

,

(

)

1

(

))

|

((

)

)

)

)

)

(((((

_

_

_

_

_

_

_

_

_

_

_

_

_

y

q

f

y

q

f

n

m

l

n

m

n

m

å

Î

×

-

-

G

=

The space group
[image: image237.wmf]G

 of the crystal consists of the operators
[image: image238.wmf])

|

(

_

_

n

u

P

F

i

i

+

=

.
[image: image239.wmf]_

k

 is the input wave vector.
[image: image240.wmf]_

k

G

 is the little group of the second kind, or group of the wave vector, it consists of space group operators
[image: image241.wmf])

|

(

_

_

n

u

P

i

i

+

 with
[image: image242.wmf]_

k

i

P

P

Î

. The little point group
[image: image243.wmf]_

k

P

 consists of the point group operators
[image: image244.wmf]i

P

 with
[image: image245.wmf]G

u

P

i

i

Î

)

|

(

_

 and
[image: image246.wmf]_

_

_

K

k

k

P

i

+

=

, where
[image: image247.wmf]_

K

 is a reciprocal lattice vector.

[image: image248.wmf]j

 is the index of the irreducible representation of
[image: image249.wmf]_

k

G

. These irreducible representations are formed from those of the group
[image: image250.wmf]_

k

P

 or, for the case
[image: image251.wmf]_

k

 lies on the Brillouin zone boundary and
[image: image252.wmf]_

k

G

 is nonsymmorphic, from the allowable irreducible representations of the factor group
[image: image253.wmf]_

_

/

k

k

T

G

. Here
[image: image254.wmf]_

k

T

 is the group of lattice translations
[image: image255.wmf])

|

(

_

n

E

 for which
[image: image256.wmf]1

_

_

=

×

-

n

k

i

e

. An irreducible representation of
[image: image257.wmf]_

_

/

k

k

T

G

 is allowable if an element of the coset
[image: image258.wmf]_

)

|

(

_

k

T

m

E

 is represented by
[image: image259.wmf]_

_

m

k

i

e

×

-

 times the unit matrix.

[image: image260.wmf]_

k

j

l

 is the dimension of the irreducible representation.

[image: image261.wmf]*

_

))

|

((

_

dd

A

k

j

u

P

G

 is the complex conjugate of the dth diagonal element of the representative of
[image: image262.wmf])

|

(

_

u

P

 in the allowable irreducible representation
[image: image263.wmf]A

k

j

G

_

 of
[image: image264.wmf]_

k

G

. For symmorphic groups and nonsymmorphic groups with a symmorphic
[image: image265.wmf]_

k

G

 or
[image: image266.wmf]_

k

 within the first Brillouin zone boundary, all irreducible representations are allowable and the subscript A is superfluous.
[image: image267.wmf])

,

(

_

_

n

m

G

 is the set of elements
[image: image268.wmf]_

)

|

(

_

k

G

u

P

Î

 with
[image: image269.wmf])

,

,

(

)

|

(

_

_

_

_

_

1

_

n

m

n

m

F

n

u

P

+

=

-

 where
[image: image270.wmf])

,

,

(

_

_

_

n

m

F

n

 is a lattice vector.
[image: image271.wmf]c

 is the index for the chemical element.
[image: image272.wmf]'

_

k

g

 is the order of
[image: image273.wmf])

,

(

_

_

n

m

G

.

[image: image274.wmf]l

 is the inversion label of the point group operator
[image: image275.wmf]P

 and
[image: image276.wmf]m

m

l

D

'

)

,

,

(

y

q

f

 is defined in section ‎1. This formula corresponds to formula (5.38) in reference ‎[4] which we refer to for the theory.

3.3
Description of the program

The projection matrix defined in the previous section is block diagonal with respect to the subscripts
[image: image277.wmf]c

 and
[image: image278.wmf]l

. For each particular
[image: image279.wmf]c

 and
[image: image280.wmf]l

 there is a diagonal block, which is a projection matrix by itself. One can construct a matrix
[image: image281.wmf]cl

k

j

t

_

 of orthonormal columns from each of those sub-projection matrices. These matrices form the output of the program. They give the coefficients for the harmonics which are adapted to the symmetry of the space group. This output is given for all wave vectors of the input and all irreducible representations. The text in the output is explaining the details, so it is not necessary to read through this section to understand the form of the output.
This section gives a detailed description of the functioning of the program and comments to possible input or program errors.

The program SYMPRJS can be divided into 9 sections.
Section 1. Input (See chapter 3.1 for the sequence of input data).
1.1 Read input 1 (the numbers refer to the points in chapter ‎3.1).

1.2 Read input 2, matrix
[image: image282.wmf]A

 with
[image: image283.wmf]A

)

,

,

(

)

,

,

(

_

_

_

3

_

2

_

1

_

z

y

x

e

e

e

a

a

a

=

.

1.3 Print input 2.

1.4 Calculate matrix
[image: image284.wmf]B

 so that
[image: image285.wmf]B

)

,

,

(

)

,

,

(

_

_

_

3

_

2

_

1

_

z

y

x

e

e

e

b

b

b

=

 form the reciprocal lattice vectors. It is easy to prove that
[image: image286.wmf]B

 is the inverse of the transpose of
[image: image287.wmf]A

:
[image: image288.wmf]T

)

(

1

-

=

A

B

. Store
[image: image289.wmf]1

-

B

 in bi and
[image: image290.wmf]1

-

A

 in ai.

1.5 Print the matrix
[image: image291.wmf]B

.

1.6 Read the input 3: pgnr, nel, lmax.

1.7 Print nel, the number of chemical elements.

1.8 Read input 4.

1.9 Read input 5 and transform, if necessary to Cartesian coordinates.

1.10 Print the number of atoms of each chemical element and their positions, according to ‎1.8 and ‎1.9.

1.11 Read order, the order of the point group with index pgnr and the position of the first element of this point group (first).

1.12 Read the elements of the point group into gel(1:order). Read the primes into npri(1:100).

1.13 For nonsymmorphic space groups (steer(20) = ‘false’): Read the nonprimitive translations associated with each point group operator into u(1:order,1:3). Transform if necessary to lattice coordinates.

1.14 If the point group is a subgroup of 2D6h (16 ≤ pgnr ≤ 31), go to ‎1.16.

1.15 Print “The point group no ‘pgnr’ of the crystal is a subgroup of Oh”. Set the reading index K96 = 0. Read from the multiplication table of 2Oh, the rows with row indices gel(1:order) into mtab(I,K). If pgnr = 36 the point group is 2Oh itself, the complete table is read into mtab, no selection of columns has to be made. Go in that case directly to ‎1.18. Otherwise, go to ‎1.17.

1.16 Read from the multiplication table of 2D6h, the rows with row indices gel(1:order) into mtab(I,K). Set the read index K96 = 96. Print “The point group no ‘pgnr’ of the crystal is a subgroup of D6h with element nrs”. If pgnr = 31 the point group is 2D6h itself, no selection of columns has to be made. In this case, go directly to ‎1.18.

1.17 Select in mtab the columns with column indices gel(1:order) and then shift to the left, so that the upper left order x order block of mtab becomes the multiplication table, where the elements are indexed as in 2Oh or 2D6h. Renumber the elements from 1 to order using the matrix inver(I) and obtain finally the multiplication table of the point group.

1.18 Print the element numbers gel(1:order). This output follows immediately the printing under ‎1.15 or ‎1.16. Print the maximum number of orbital quantum number l, lmax, according to ‎1.6.

1.19 Read the three dimensional orthogonal rotation matrices (or rotation-inversion matrices) corresponding to the elements of the point group
[image: image292.wmf]P

G

 of the space group. The position of these matrices is determined by the value of K96 + gel(1:order).

1.20 Read the number of wave vectors for which the projection matrices shall be calculated, into variable number_of_wave_vectors. This variable as well as nel, nat(1:nel) and lmax(1:nel) are written to the binary output file. Read a wave vector for which symmetry projection matrices must be calculated. Further read the number nfacto which is the number of wave vectors in the same direction for which the calculation should be repeated. If the index last in column 1 is equal to 1, go to section 9. Transform, if necessary the given coordinates of the wave vector to reciprocal lattice coordinates. If nfacto > 1, read the factors by which the original vector should be multiplied to obtain the successive wave vectors in the same direction. The original vector is stored into ark(1:3).

1.21 The index IV enumerates the number of vectors in the same direction for which a symmetry projection has been made. Set IV = 1 and set the factor by which the original vector should be multiplied, for the first calculation equal to 1.

1.22 If all vectors for the present direction have been treated (IV > nfacto, nfacto > 1 or IV > 1, nfacto = 0) go to ‎1.20 to read a new wave vector.

1.23 If IV = 1, go to ‎2.1 for the formation of
[image: image293.wmf]_

k

P

, the point group of the wave vector. If the original vector (IV = 1, nfacto > 1) lies on the Brillouin zone boundary, the next vector (IV = 2) may have lower symmetry: Go to ‎2.1 to form
[image: image294.wmf]_

k

P

. If IV > 2 and IV ≤ nfacto, the new vector will have the same symmetry as the preceding one.
[image: image295.wmf]_

k

P

 and its irreducible representations do not have to be calculated again. In this case, go to section 8. If
[image: image296.wmf]_

_

0

=

k

,
[image: image297.wmf]P

k

G

P

=

_

, go to ‎2.2.

Section 2. Formation of the point group of the wave vector
[image: image298.wmf]_

k

P

.

2.1 Multiply the original wave vector with factor(IV) and
[image: image299.wmf]p

2

, kgord will be the order of
[image: image300.wmf]_

k

P

. kgel(I) will be the index of the Ith element of
[image: image301.wmf]_

k

P

, where the index refers to the enumeration 1:order of point group
[image: image302.wmf]P

G

. Transform the wave vector to Cartesian coordinates and operate on it successively with all the rotation matrices of group
[image: image303.wmf]P

G

. Transform back to reciprocal lattice coordinates and subtract the original wave vector. The result is
[image: image304.wmf]_

_

k

k

P

-

. If
[image: image305.wmf]_

k

P

P

Î

 this difference will be a reciprocal lattice vector
[image: image306.wmf]_

K

. Since
[image: image307.wmf]_

k

 lies within or on the first Brillouin zone boundary, the components
[image: image308.wmf]_

K

 (in reciprocal lattice coordinates) can only be 0 or
[image: image309.wmf]p

2

±

. Test the components of
[image: image310.wmf]_

_

k

k

P

-

 for these values. If each component is equal to 0 or
[image: image311.wmf]p

2

±

, the element
[image: image312.wmf]P

 belongs to
[image: image313.wmf]_

k

P

 and is registered as such. When all elements
[image: image314.wmf]P

 of
[image: image315.wmf]P

G

 have been tested, go to ‎2.3.

2.2 If
[image: image316.wmf]_

_

0

=

k

 then
[image: image317.wmf]P

k

G

P

=

_

 and we register the elements of
[image: image318.wmf]_

k

P

 in this way into kgel. The indices of the elements in the enumeration of 2Oh/2D6h are registered into kkgel. Further
[image: image319.wmf]_

k

 lies of course within the first Brillouin zone. Set ibz = ‘true’. The multiplication table mtab2 of
[image: image320.wmf]_

k

P

 is in this case equal to the multiplication table mtab of
[image: image321.wmf]P

G

. Go to section 5.

2.3 Form the multiplication table mtab2 of
[image: image322.wmf]_

k

P

 from the multiplication table mtab of
[image: image323.wmf]P

G

, using the information in kgel. Register the indices of the elements of
[image: image324.wmf]_

k

P

 in the enumeration of the elements of 2Oh/2D6h into kkgel. If G is symmorphic (steer(20) = ‘true’), go to section 5.

Section 3. Tests for the nonsymmorphic space group.

The vector
[image: image325.wmf]_

k

 is tested by function bztest.
3.1 If
[image: image326.wmf]_

k

 lies within the first Brillouin zone, ibz is set to ‘true’.
If
[image: image327.wmf]_

k

 lies on the first Brillouin zone boundary, ibz is set to ‘false’.
If
[image: image328.wmf]_

k

 lies outside the first Brillouin zone, the user have supplied unallowed input, a message is printed and control goes to section ‎1.20.
bztest tests if
[image: image329.wmf]3

_

2

_

1

_

3

_

2

_

3

_

1

_

2

_

1

_

3

_

2

_

1

_

_

_

_

_

_

,

,

,

,

,

,

for

2

1

|

|

b

b

b

b

b

b

b

b

b

b

b

b

c

c

c

c

k

+

+

+

+

+

=

×

£

×

.
If
[image: image330.wmf]_

k

 itself does not lie in the first octant, then the appropriate signs are changed, for example
[image: image331.wmf]etc.

,

,

3

_

2

_

1

_

_

b

b

b

c

-

-

=

If steer(18) = ‘true’ and ibz = ‘true’ print “Nonsymmorphic but within Bz”. If ibz = ‘true’, go to section 5.

3.2 The space group
[image: image332.wmf]_

k

G

 associated with
[image: image333.wmf]_

k

P

 may be symmorphic even when the complete space group is nonsymmorphic. If
[image: image334.wmf]_

k

G

 is symmorphic, ksym is set to ‘true’, otherwise ksym = ‘false’.
[image: image335.wmf]_

k

G

 is symmorphic if the “nonprimitive” translations u(I,K), associated with the point group operators of
[image: image336.wmf]_

k

P

 are all equal to zero translations. If steer(18) = ‘true’ and ksym = ‘true’, print “Nonsymmorphic but symmorphic
[image: image337.wmf]_

k

G

”. If ksym = ‘true’, go to section 5.

Section 4. Formation of the factor group
[image: image338.wmf]_

_

/

k

k

T

G

.

If
[image: image339.wmf]G

 is nonsymmorphic and
[image: image340.wmf]_

k

 is on the Brillouin zone boundary and
[image: image341.wmf]_

k

G

 is nonsymmorphic, one has to form the factor group
[image: image342.wmf]_

_

/

k

k

T

G

 in order to form a projection matrix, based on the irreducible representations of this group (see for example reference ‎[4]).

[image: image343.wmf]_

k

T

 is the subgroup of the translation group of the crystal lattice such that if
[image: image344.wmf]_

)

|

(

_

k

T

m

E

Î

 then
[image: image345.wmf]1

_

_

=

×

-

m

k

i

e

. The elements of
[image: image346.wmf]_

_

/

k

k

T

G

 are the cosets of
[image: image347.wmf]_

k

G

 with the respect to
[image: image348.wmf]_

k

T

. Two elements of
[image: image349.wmf]_

k

G

,
[image: image350.wmf])

|

(

_

_

n

u

P

i

i

+

 and
[image: image351.wmf])

|

(

_

_

m

u

P

j

j

+

 belong to the same coset if
[image: image352.wmf]j

i

=

 and
[image: image353.wmf]_

_

_

_

_

_

)

(

)

(

m

u

k

i

n

u

k

i

j

i

e

e

+

×

-

+

×

-

=

. So the elements of
[image: image354.wmf]_

_

/

k

k

T

G

 can be characterized by the index of the point group operator and the value of the exponential term. We form the group
[image: image355.wmf]_

_

/

k

k

T

G

, starting with the elements
[image: image356.wmf])

|

(

_

_

i

i

u

P

 with
[image: image357.wmf]_

k

i

P

P

Î

 and the multiplication table of
[image: image358.wmf]_

k

P

. These elements form the first kgord elements of
[image: image359.wmf]_

_

/

k

k

T

G

 (kgord is the order of
[image: image360.wmf]_

k

P

). We form the multiplication table, using the multiplication rule

[image: image361.wmf])

|

(

)

|

(

)

|

(

)

|

)(

|

(

_

_

_

_

_

_

_

n

u

P

t

P

u

u

P

P

P

u

P

u

P

l

l

l

i

j

i

j

i

j

j

i

i

+

=

=

+

=

The index l is determined from the multiplication table of
[image: image362.wmf]_

k

P

.
If
[image: image363.wmf]l

u

k

i

t

k

i

e

e

_

_

_

_

×

-

×

-

¹

 then
[image: image364.wmf])

|

(

_

t

P

l

 does not belong to the coset of
[image: image365.wmf])

|

(

_

l

l

u

P

, but to a new coset with the same index for the point group operator but a different value for the exponential term. These two indices determine a new element of the group
[image: image366.wmf]_

_

/

k

k

T

G

.

k2gord is the order of
[image: image367.wmf]_

_

/

k

k

T

G

. At the beginning of the process k2gord = kgord. listp(I) is the index of the point group operator (in the enumeration of the elements of
[image: image368.wmf]_

k

P

). listp(1:kgord). til(I,1:3) are the vectors
[image: image369.wmf]_

t

. For the first kgord elements these are equal to the
[image: image370.wmf]i

u

_

 corresponding to the
[image: image371.wmf]_

k

i

P

P

Î

. s(I) are the exponential values
[image: image372.wmf]_

_

t

k

i

e

×

-

. nopi(1:kgord) are the numbers of group elements of
[image: image373.wmf]_

_

/

k

k

T

G

 with the same point group operator index I. The Kth operator, which has index I for its point group operator, is the nopli(I,K)th element of
[image: image374.wmf]_

_

/

k

k

T

G

. Its exponential term is equal to sil(I,K). We go through the multiplication table row by row, forming the elements in each row. If a new element is created, the multiplication table will obtain a new row and a new column. For all preceding rows this new element in the last column must be calculated, so the program returns to row 2, last column. The number of elements, already determined in row I is nr(I). When a new element in row I has been calculated, nr(I) is increased by one. The point group index of a product is calculated by the statement index1 = mtab2(N1,N2).
[image: image375.wmf]i

j

i

u

u

P

_

_

+

 is calculated straightforwardly. Its exponential value, sres, is compared with the given exponential values for this point group operator, that is with sil(index1,1:nopi(index1)). If it is equal to sil(index1,K1), the element in the multiplication table is set equal to nopi(index1,K1).
If it is not equal to any of the given exponentials, we have found a new element: k2gord is increased by one, the multiplication table is enlarged with one row and column and the program sets the row count to 2 in order to calculate the element in the new column.
After a few such steps no new elements have to be added and the multiplication table is calculated as described above.

At the end of the process the order of
[image: image376.wmf]_

_

/

k

k

T

G

 is put into kgord and its multiplication table into mtab2 in order to be used by function Irrep. The point group indices, as numerated in group 2Oh/2D6h are put into llistp.

Section 5. Wave vectors in the same direction.
In the case that the new wave vector has the same symmetry as the preceding one, the diagonal elements of the irreducible representations of
[image: image377.wmf]_

k

P

 are still stored. Go immediately to section 8.

Section 6. Calculation of the diagonal elements of the irreducible representations.

6.1 First print a few lines of output:
Print “Projection matrices for the wave vector srk”
Print “The point group of the wave vector consists of kg operators, indexed as nrs. kkgel.”
If
[image: image378.wmf]_

_

/

k

k

T

G

 had to be formed, print “The factor group
[image: image379.wmf]_

_

/

k

k

T

G

 consists of I point group operators llistp(I), nonprimitive translations til(I,K), exp = s(I).

6.2 Function Irrep will calculate the irreducible representations of the group of order kgord with multiplication table mtab2. It writes the diagonal elements of the irreducible representatives.
Function Irrep and its subfunctions have been described as an independent program in reference ‎[1]. The following changes have been made: The group order and multiplication table have not to be read as input by Irrep, since they already exist. In Irrep, the value kgord is called G and mtab2 is called multab.
A few statements have been added at the end of function repres, in order to write the diagonal elements of the (allowable) irreducible representations.
An irreducible representation of
[image: image380.wmf]_

_

/

k

k

T

G

 is allowable if an element of the coset
[image: image381.wmf]_

)

|

(

_

k

T

m

E

 is represented by
[image: image382.wmf]_

_

m

k

i

e

×

-

 times the unit matrix. The dimensions of the irreducible representations are stored in increasing order into laj(J). If steer(19) = ‘true’, the irreducible character will be printed. Function charac, a function called by Irrep, uses the primes stored in npri.

6.3 The number of projection matrices is equal to the sum of the dimensions of the (allowable) irreducible representations. This number is stored into nup.
Each projection matrix is blockdiagonal for the index of the chemical element, which runs from 1 to nel and for the orbital quantum number l which runs from 0 to lmax.
So each projection matrix consists of nel·(lmax + 1) blocks along the main diagonal. This number is stored into nblock. Each block is itself a projection matrix.

Section 7. Formation of the summation sets
[image: image383.wmf])

,

(

_

_

n

m

G

.
Each block of a projection matrix, with fixed indices for the chemical element and orbital quantum number, which itself forms a projection matrix, can be divided further into subblocks labelled by the atomic positions
[image: image384.wmf]_

_

,

n

m

 of the actual chemical element in the unit cell. In the calculation of such a subblock, the elements of
[image: image385.wmf]_

k

P

 (or
[image: image386.wmf]_

_

/

k

k

T

G

) give only then a contribution, if they belong to the set
[image: image387.wmf])

,

(

_

_

n

m

G

 defined by

[image: image388.wmf])

,

,

(

)

|

(

if

)

,

(

)

|

(

_

_

_

_

_

1

_

_

_

_

n

m

n

m

n

m

i

n

u

P

G

u

P

i

i

i

i

+

=

Î

-

where
[image: image389.wmf])

,

,

(

_

_

_

n

m

i

n

 is a lattice vector (see chapter ‎3.2).

In this section we form the sets
[image: image390.wmf])

,

(

_

_

n

m

G

 with the corresponding lattice vectors
[image: image391.wmf])

,

,

(

_

_

_

n

m

i

n

 for all chemical elements. np(K,I,J) is the order of the set of space group operators F, for chemical element K, for which

F*(coordinate of atom I) – (coordinate of atom J) is a lattice vector.
npl(K,I,J,1:np(K,I,J)) are the indices of the space group operators F, which belong to this set. nvec(K,I,J,L,1:3) are the coordinates of the corresponding lattice vector.
The procedure is as follows: Initiate the index I1 for the chemical element, initiate the index of the first atom index I3 (corresponding to
[image: image392.wmf]_

m

). Transform this atom position successively with all operators of
[image: image393.wmf]_

k

P

 (or
[image: image394.wmf]_

_

/

k

k

T

G

) and check which new atom position, denoted by I9 (corresponding to
[image: image395.wmf]_

n

), is obtained, up to a lattice vector.

If for chemical element I1, atom I3 is transformed to atom I9 by operator I4 of
[image: image396.wmf]_

k

P

 (or
[image: image397.wmf]_

_

/

k

k

T

G

), up to a lattice vector difi(1:3), then np(I1,I3,I9) is increased by one, npl(I1,I3,I9,np(I1,I3,I9)) = I4 and nvec(I1,I3,I9,K,1:3) = difi(1:3). This process is repeated for all allowed values of I1 and I3. If it occurs that an atomic position is transformed to a position which is not a position of an atom of the same chemical element, this means that the input is in error. The space group given in the input does not describe the crystal symmetry of the input. In this case the program prints a message: “Wrong space group, I1, I3, I4, I5”. This informs the user that atom I3 of chemical element I1 is not transformed to an atom position of the same chemical element by operator I4 of
[image: image398.wmf]_

k

P

 (
[image: image399.wmf]_

_

/

k

k

T

G

). I5 is the index of the point group operator corresponding to I4, in the enumeration of the point group of the space group. After this message the program goes to section 9. When all chemical elements have been treated, control goes to section 8.
Section 8. The formation of the projection matrices.
The projection matrices are formed according to the formula in chapter ‎3.2. All necessary information is now available.

8.1 Initiate the values for J (j), JD (d), the chemical element ichem (c), L (l) and the atom positions mu1
[image: image400.wmf]_

)

(

m

 and mu2
[image: image401.wmf])

(

_

n

. If all values of these indices have been treated, go to section ‎1.20. ncoset is set equal to np(ichem,mu1,mu2). This is the number of terms in the summation and is equal to the number of operators which transform atom mu1 to atom mu2, up to a lattice vector.
If ncoset is zero, this means that the operations which transform atom mu1 to atom mu2 were not included in the input space group. This means that the actual symmetry is higher than that of the given space group. The following message is printed: “Space group is not maximal, ichem, mu1, mu2”. The case that the given space group is not the maximal space group, may also occur when ncoset is not zero, but has a lower value than it would have with the maximal space group. But such a case can not be detected by the program.

8.2 Initiate the values for M1 (m) and M2 (m’). Calculate the number N3, which determines the address of the elements
[image: image402.wmf]'

)

1

(

mm

l

l

D

l

-

, and read them into ldmm(1:144).

8.3 Calculate the terms and add them according to the formula in chapter ‎3.2. Perform 8.2 and 8.3 for all the allowed values of m and m’. The resulting sub-projection matrix is stored into jdpk(K4,K5).

8.4 Test if the resulting matrix is idempotent and hermitian. If not, print a message.

8.5 Orthonormalise the columns of the sub-projection matrix and store the resulting rectangular t-matrix into tmatri. We make use of some properties of the projection matrix: If the diagonal terms of a column is equal to 0 or 1, all the other elements in that column vanish. We select first the columns with 1 in the diagonal terms; these are already orthonormal. Then we orthonormalise the remaining columns by the Schmidt procedure. The process is stopped as soon as we have got ntr columns, where ntr is the trace of the sub-projection matrix. If it is possible to select ntr orthonormal columns (for example by rounding off errors or because the program discarded some columns, since these had so small elements that errors would be large after normalisation) then the program prints an error message “Error, not enough orthonormal columns”. Then the program goes to section 9. This error has never occurred when the authors ran the program. Therefore, one can perhaps discard the statements for the test and the error message.

8.6 Write the produced t-matrix. Go to section ‎8.1.

Section 9. End of the program.
Print “SYMPRJS has finished executing” and stop.
3.4 Program proj_symprjs.m
Program proj_symprjs.m reads the binary output file from SYMPRJS.m and orders the columns into a super projection matrix, where the submatrix blocks are ordered along the main diagonal as:
(chem_elem_1, atom_1, L = 0), (chem_elem_1, atom_1, L = 1),…,(chem_elem_1, atom_1, L = lmax(chem_elem_1), (chem_elem_1, atom_2, L = 0),…,(chem_elem_1, atom_2, L = lmax(chem_elem_1), (chem_elem_2, atom_1, L = 0),…, (chem_elem_2, atom_1, L = lmax(chem_elem_2),…

In proj_symprjs.m, the following statements have to be adapted to your naming the input/output files:

in_proj = fopen(‘xx’, ‘r’); where xx is your name for the SYMPRJS.m binary output file.

out_proj = fopen(‘yy’, ‘a’), where yy is your name for the proj_symprjs.m binary output file.
[image: image403.emf]Symprjs

Define input files

IV = 1 or IV ≤nfacto?

symmorphic?

Calculate irreducible representations

and store the diagonal elements.

IV = 1

Print ”SYMPRJS

has finished exec.”

Stop

_

k

Symmorphic space group?

_

k

G

__

/

kk

TG

no

no

yes

yes

Form the group

Form the projection matrix.

Form sets

Orthonormalise to t-matrix. Print t-matrix.

yes

no

IV = IV + 1

yes

Form

Last -vector?

_

k

P

Within first Brillouin zone?

yes

no

IV>2?

yes

),(

__

G

= factor(IV)

_

k

_

k

no

Last projection matrix for this wave vector?

yes

no

no

Figure 5: Flowing scheme of program Symprjs
4. Program SYMPWS

This is the main program, which calculates the coefficients to the plane waves, so that the linear combinations form irreducible basis functions for the given space group and wave vector.

Large parts of this program are identical with parts in program SYMPRJS. We shall refer for the description of those parts to the previous descriptions in chapter ‎3. This program uses some of the datasets prepared by program prodats.
4.1
Description of the input

The input of the program should consist of a sequence of data sets in the following order.

1 There shall be 20 logical 1’s (true) and 0’s (false). These logical parameters are read into an array steer(1:20) and the parameters steer the amount of output data that will be printed. See Table 4 for the meaning of steer(I) = ‘true’ or ‘false’ for each I. Additionally to what is stated in Table 4, we have that if steer(17) = ‘true’ then it is printed how the stable basis of plane waves transforms under the point group
[image: image404.wmf]_

k

P

. See chapter 4.3, section 3.

2 Three sets with three numbers each, defining the three rows of a matrix
[image: image405.wmf]A

. The matrix
[image: image406.wmf]A

 describes the primitive unit cell vectors
[image: image407.wmf]3

_

2

_

1

_

,

,

a

a

a

 according to
[image: image408.wmf]A

)

,

,

(

)

,

,

(

_

_

_

3

_

2

_

1

_

z

y

x

e

e

e

a

a

a

=

where
[image: image409.wmf])

,

,

(

_

_

_

z

y

x

e

e

e

 are the unit vectors in the Cartesian coordinate system.

3 One set, giving pgnr. This is the index of the point group which belongs to the space group, as described in chapter ‎2. The indices are given in Table 3, column 1.

4 The sets of this point must be given only for a nonsymmorphic space group. steer(20) of point 1 in the input must be set equal to ‘false’ for a nonsymmorphic space group. If steer(20) = ‘true’ the program assumes that the space group is symmorphic and it will attempt to read the sets under input 5 immediately after those of input 3.

For nonsymmorphic space groups the input should consist of order sets, where order is the number of elements in the point group of the space group, the index of which (pgnr) was given as input under input 3.

Set no. n should contain the nonprimitive translation associated with the nth point group element, where the point group elements are given in order of Table 3, column 3.

For example, if pgnr = 9, the point group is 2C4 and there should be 8 sets under point 6 if the space group is nonsymmorphic. Then the second set for example, should give the coordinates of the nonprimitive translation associated to the second point group operator, which according to Table 3 is h4. Table 1 informs then that h4 is the rotation through angle
[image: image410.wmf]p

 about (0,0,1).

Even when there is no nonprimitive translation associated with a particular point group operator, it should be given as a zero vector, in order to obtain as many sets as there are point group operators and to have them in the required order. The integer uco in the first column of each set, informs the program about the coordinate system in which the nonprimitive translations are given. uco = 1 means Cartesian coordinates. uco = 0 means lattice coordinates.

5 This set contains the wave vectors
[image: image411.wmf]_

k

 and the reciprocal lattice vectors
[image: image412.wmf]n

K

_

 for which the calculations will be made. The set containing the wave vector is:

last, wvco, rk(1), rk(2), rk(3), nrec, krep

If last = 1, the program stops assuming that this is the last set in the input.

rk(1:3) are the coordinates of
[image: image413.wmf]_

k

. When wvco = 1 these coordinates should be in Cartesian coordinates, when wvco = 0 in reciprocal lattice coordinates. The input coordinates should be given in units of
[image: image414.wmf]p

2

, they are multiplied by
[image: image415.wmf]p

2

 in the program.

nrec is the number of sets, each with one reciprocal lattice vector that follow after the present set.

For the first
[image: image416.wmf]_

k

-vector it is necessary that krep = 0, this is explained below.

Then follow nrec sets. Each set contains the reciprocal lattice coordinates of one reciprocal lattice vector
[image: image417.wmf]n

K

_

. These are the vectors
[image: image418.wmf]n

K

_

, defining the plane waves
[image: image419.wmf])

)

(

(

_

_

_

_

r

K

k

i

k

n

n

e

×

+

=

y

 that should be included in the basis, which will be symmetrized. One does not have to bother if the given
[image: image420.wmf]n

K

_

-vectors define a stable basis, since the program itself extends the basis to form a stable basis.

Thereafter follows the next
[image: image421.wmf]_

k

-vector in the input. If one wants to use the same reciprocal lattice vectors
[image: image422.wmf]n

K

_

 for this
[image: image423.wmf]_

k

-vector as for the preceding one, one sets krep = 1. Then the program uses the same set of
[image: image424.wmf]n

K

_

. Then one can give immediately the next
[image: image425.wmf]_

k

-vector etc. One ends the input with a set with last = 1. Other information in that set is ignored, the program stops after writing ‘SYMPWS has finished executing’.

You will have to update the following statements in SYMPWS.m:

read_inputdata = fopen('xx.dat','r');
where xx is the name of your ASCII input data file.

fid = fopen(‘yy.m','a');

where yy is the name of your .m output data file.

write_proj = fopen(‘zz','a');

where zz is the name of your binary output data file.

4.2
Formula, which has been programmed

We refer to references ‎[4] and ‎[5] for the theory which leads to the following formula for the projection matrix:

[image: image426.wmf]s

s

i

mn

i

i

P

P

dd

i

i

A

k

j

k

k

j

s

s

mn

dd

k

j

P

D

u

P

u

P

g

l

S

k

i

'

2

/

1

_

*

_

'

'

)

(

))

|

((

))

|

((

)

)

((

_

_

_

_

_

å

Î

=

Γ

Γ

with
[image: image427.wmf])

)

(

(

_

_

_

_

))

|

((

i

m

u

K

k

i

mn

i

i

e

u

P

×

+

-

=

Γ

 if
[image: image428.wmf]m

n

i

K

k

K

k

P

_

_

_

_

)

(

+

=

+

 and otherwise
[image: image429.wmf]0

))

|

((

_

=

mn

i

i

u

P

Γ

. All other symbols are the same as in chapter ‎3.2. The stable basis consists of functions
[image: image430.wmf])

)

(

(

_

_

_

_

r

K

k

i

k

n

n

e

×

+

=

y

.
The columns of the projection matrix are orthonormalized to each other, forming the matrix
[image: image431.wmf]mn

dd

k

j

t

)

(

_

. These columns are the coefficients of the plane waves
[image: image432.wmf]m

k

_

y

, forming linear combinations that are symmetry adapted to the dth row of the irreducible representation
[image: image433.wmf]A

k

j

Γ

_

 of
[image: image434.wmf]_

k

G

, the little group of
[image: image435.wmf]_

k

 of the second kind. This gives immediately the symmetry adaptation for the whole space group.
4.3
Description of the program

The matrices
[image: image436.wmf]mn

dd

k

j

dd

k

j

t

)

(

_

_

=

t

 form the output of the program. They give the coefficients for the plane waves which form linear combinations that are adapted to the symmetry of the space group. This output is given for all wave vectors of the input and all irreducible representations
[image: image437.wmf]G

_

k

j

. The functions
[image: image438.wmf])

)

(

(

_

_

_

_

r

K

k

i

k

n

n

e

×

+

=

y

 are written as
[image: image439.wmf])

(

n

K

 in the output. A list of correspondence between
[image: image440.wmf]n

K

_

 and
[image: image441.wmf])

(

n

K

 is given in the output under the heading ‘The following lattice vectors form a stable basis’.

The text in the output is explaining the details, it is not necessary to read through chapter 4.3 to understand the form of the output.

Here follows a detailed description of the functioning of the program and comments to possible input or program errors. Since whole sections of program SYMPWS are identical to sections of program SYMPRJS, we refer for those sections to the description in chapter 3.3.
The program Sympws can be divided into 9 sections.

Section 1. Input (see chapter 4.1 for the sequence of input).
1.1 Read input 1 (chapter 4.1, input 1).

1.2 Read input 2 (chapter 4.1, input 2).

1.3 Print input 2.

1.4 Calculate matrix B (chapter 3.3, section ‎1.4).

1.5 Print matrix B.

1.6 Read input 3 (chapter 4.1, input 3), the index pgnr of the point group.

1.7 Read order (chapter 3.3, section ‎1.11)

1.8 Read the elements of the point group (chapter 3.3, section ‎1.12).

1.9 For nonsymmorphic space groups (steer(20) = ‘false’), read the nonprimitive lattice translations (chapter 3.3, section ‎1.13).

1.10 If the point group is a subgroup of 2D6h (16 ≤ pgnr ≤ 31), go to section ‎1.12.

1.11 See chapter 3.3, section ‎1.15, go to section ‎1.13.

1.12 See chapter 3.3, section ‎1.16.

1.13 See chapter 3.3, section ‎1.17.

1.14 Print the element numbers gel(1:order). This output follows immediately the printing under ‎1.11 or ‎1.12.

1.15 See chapter 3.3, section ‎1.19.

1.16 Transform the rotation matrices to the reciprocal lattice coordinates.

1.17 Read input 5 (chapter 4.1), transform if necessary the coordinates of
[image: image442.wmf]_

k

 to the reciprocal lattice coordinates. Print the vectors
[image: image443.wmf]n

K

_

 of the input. For last = 1, control goes to section 8.

Section 2. Formation of the point group of the wave vector
[image: image444.wmf]_

k

P

.

2.1 Test
[image: image445.wmf]_

k

 with respect to the Brillouin zone (see chapter 3.3 section ‎3.1).

2.2 See chapter 3.3, section ‎2.1-‎2.3. A difference with chapter 3.3, section 2 is that the transformations are made in reciprocal lattice coordinates instead of Cartesian coordinates.

Section 3. Formation of a stable basis.

The reciprocal lattice vectors
[image: image446.wmf]n

K

_

 of the input are transformed by the operations of the point group
[image: image447.wmf]_

k

P

 into each other or in new lattice vectors
[image: image448.wmf]m

K

_

. The set is extended to be stable under
[image: image449.wmf]_

k

P

. kmat(I,J) gives the index of the reciprocal lattice vector, to which the Jth reciprocal lattice vector is transformed by the Ith operator of
[image: image450.wmf]_

k

P

. The stable basis consists of nrec vectors
[image: image451.wmf]n

K

_

.They are printed under the heading “The following nrec lattice vectors form a stable basis”. If steer(17) = ‘true’ then also kmat(I,J) will be printed.
For symmorphic space group or
[image: image452.wmf]_

k

 within Bz, go to section 6.

Section 4. Tests for the symmorphic group.

See chapter 3.3, section ‎3.2.
Section 5. Formation of the factor group
[image: image453.wmf]_

_

/

k

k

T

G

.

See chapter 3.3, section 4.
Section 6. Calculation of the diagonal elements of the irreducible representations.

6.1 See chapter 3.3, section ‎6.1.

6.2 See chapter 3.3, section ‎6.2.

6.3 The number of projection matrices is equal to the sum of the dimensions of the (allowable) irreducible representations. This number is stored into nup.

Section 7. The formation of the projection matrices.

The projection matrices are formed according to the formula in chapter 4.2. All necessary information is now available.

7.1 Initiate the values for J (j) and JD (d).
Read the diagonal elements
[image: image454.wmf]dd

k

j

G

_

 if steer(18) = ‘true’, these elements will also be printed. The dimension of the projection matrix, stored in jdpk(I,K) will be nrec, which is the dimension of
[image: image455.wmf]mn

i

i

u

P

))

|

((

_

G

 in chapter 4.2. This is the summation for the group elements. The factors to be summed are constructed a little differently, depending on if (1)
[image: image456.wmf]_

k

G

 is symmorphic, (2)
[image: image457.wmf]_

k

G

 is nonsymmorphic but
[image: image458.wmf]_

k

 within the Bz, (3) Nonsymmorphic
[image: image459.wmf]_

k

G

,
[image: image460.wmf]_

k

 on the Bz-boundary.

7.2 Test if the resulting matrix is idempotent and hermitian. If not, print a message.

7.3 Orthonormalisation of the columns of the projection matrix, see chapter 3.3, section ‎8.5.

7.4 Write the produced t-matrix, go to section ‎7.1.

Section 8. End of the program.

Print “SYMPWS has finished executing” and stop.
4.4 Program proj_sympws.m

Program proj_sympws.m reads the binary output file from SYMPWS.m and orders the columns for each
[image: image461.wmf]_

k

-vector into separate projection matrices.
In proj_sympws.m, the following statements have to be adapted to your naming the input/output files:

in_proj = fopen(‘xx’, ‘r’); where xx is your name for the SYMPWS.m binary output file.

out_proj = fopen(‘yy’, ‘a’), where yy is your name for the proj_sympws.m binary output file.
[image: image462.emf]Sympws

Define input files

Use previous set of ?

Read

Form , test to Bz

Extend the set of

so that form a

stable basis

symmorphic?

Form the projection matrix

Last -vector

Print ”SYMPWS

has finished exec.”

Stop

n

K

_

n

K

__

k

_

k

_

k

P

n

K

_

nk

_



G symmorphic or within Bz

_

k

_

k

G

Form

__

/

kk

TG

no

no

yes

yes

Calculate the irreducible

representations and store the

diagonal elements

Orthonormalise to t-matrix. Print t-matrix.

Last projection matrix for this wave vector?

yes

no

no

yes

Figure 6: Flowing scheme of program SYMPWS
5. References

[1] The 2006 edition of Program Irrep. Submitted as QCPE program, replacing the earlier edition QCPE no. 163, 1970.

[2] O. V. Kovalev, Irreducible Representations of Space Groups: Irreducible Representations, Induced Representations and Corepresentations, Gordon and Breach, 1993.

[3] International tables of X-ray Crystallography, Vol. 1, Kynoch Press, Birmingham, England 1965.

[4] E. Blokker, Symmetry Projection of Crystal Wave Functions by Means of a Computer, Journal of Computational Physics, 12, 471-490 (1973).

[5] P-O Jansson, Symmetry Adaptation of Crystal Spin-orbitals, Physica, 114A, 482-484 (1982)

_1167505377.unknown

_1168606050.unknown

_1169232812.unknown

_1207337618.unknown

_1207406132.unknown

_1210439672.unknown

_1210439785.unknown

_1210439867.unknown

_1210439927.unknown

_1210440016.unknown

_1210440168.unknown

_1210439956.unknown

_1210439895.unknown

_1210439827.unknown

_1210439703.unknown

_1210439740.unknown

_1210439686.unknown

_1210439557.unknown

_1210439604.unknown

_1209152764.unknown

_1209412693.unknown

_1208545441.unknown

_1208545440.unknown

_1207337765.unknown

_1207337932.unknown

_1207337979.unknown

_1207338049.unknown

_1207338081.unknown

_1207337955.unknown

_1207337908.unknown

_1207337669.unknown

_1207337721.unknown

_1207337638.unknown

_1169404664.unknown

_1205357457.unknown

_1207337480.unknown

_1207337527.unknown

_1207337549.unknown

_1207337507.unknown

_1207337398.unknown

_1207337420.unknown

_1207337291.unknown

_1206791083.unknown

_1169817785.unknown

_1169817841.unknown

_1170009590.unknown

_1205357157.unknown

_1205357359.unknown

_1205357121.unknown

_1169829790.unknown

_1169829939.unknown

_1169817814.unknown

_1169817829.unknown

_1169817799.unknown

_1169580464.unknown

_1169817738.unknown

_1169817762.unknown

_1169670074.unknown

_1169670297.unknown

_1169817667.unknown

_1169670260.unknown

_1169669905.unknown

_1169574166.unknown

_1169576833.unknown

_1169574139.unknown

_1169234656.unknown

_1169403051.unknown

_1169403598.unknown

_1169404522.unknown

_1169403274.unknown

_1169400417.unknown

_1169400475.unknown

_1169235538.unknown

_1169233791.unknown

_1169234351.unknown

_1169234506.unknown

_1169234614.unknown

_1169234465.unknown

_1169233840.unknown

_1169233230.unknown

_1169233248.unknown

_1169233214.unknown

_1168630403.unknown

_1168886181.unknown

_1168886446.unknown

_1168889831.unknown

_1169063281.unknown

_1169063712.unknown

_1169064135.unknown

_1169063155.unknown

_1169062765.unknown

_1169063088.unknown

_1168887172.unknown

_1168889643.unknown

_1168886841.unknown

_1168886572.unknown

_1168886606.unknown

_1168886259.unknown

_1168886295.unknown

_1168802235.unknown

_1168802455.unknown

_1168886118.unknown

_1168802711.unknown

_1168630711.unknown

_1168630728.unknown

_1168802188.unknown

_1168630681.unknown

_1168606895.unknown

_1168607629.unknown

_1168630374.unknown

_1168607087.unknown

_1168607160.unknown

_1168607049.unknown

_1168606498.unknown

_1168606599.unknown

_1168606613.unknown

_1168606524.unknown

_1168606269.unknown

_1168606335.unknown

_1168606134.unknown

_1168370959.unknown

_1168547607.unknown

_1168584896.unknown

_1168585323.unknown

_1168588384.unknown

_1168605976.unknown

_1168605995.unknown

_1168588606.unknown

_1168605938.unknown

_1168588649.unknown

_1168588489.unknown

_1168584940.unknown

_1168585303.unknown

_1168581685.unknown

_1168582175.unknown

_1168582388.unknown

_1168581793.unknown

_1168579429.unknown

_1168579472.unknown

_1168580096.unknown

_1168547892.unknown

_1168547839.unknown

_1168372058.unknown

_1168520862.unknown

_1168520902.unknown

_1168522558.unknown

_1168520901.unknown

_1168372223.unknown

_1168520837.unknown

_1168372166.unknown

_1168371704.unknown

_1168371892.unknown

_1168371942.unknown

_1168371771.unknown

_1168371193.unknown

_1168371632.unknown

_1168371125.unknown

_1168282254.unknown

_1168366991.unknown

_1168370414.unknown

_1168370686.unknown

_1168370781.unknown

_1168370616.unknown

_1168370353.unknown

_1168370280.unknown

_1168370339.unknown

_1168367048.unknown

_1168282520.unknown

_1168282705.unknown

_1168282780.unknown

_1168282575.unknown

_1168282381.unknown

_1168282465.unknown

_1168282356.unknown

_1168277332.unknown

_1168280219.unknown

_1168282078.unknown

_1168282168.unknown

_1168280257.unknown

_1168279800.unknown

_1168279932.unknown

_1168279308.unknown

_1167505896.unknown

_1168196625.unknown

_1168198552.unknown

_1168277307.unknown

_1168197074.unknown

_1167506065.unknown

_1168031438.unknown

_1168031909.unknown

_1168032081.unknown

_1168031742.unknown

_1168031391.unknown

_1167505996.unknown

_1167505686.unknown

_1167505771.unknown

_1167505546.unknown

_1167403709.unknown

_1167423372.unknown

_1167504302.unknown

_1167504758.unknown

_1167505026.unknown

_1167505293.unknown

_1167505360.unknown

_1167505216.unknown

_1167504932.unknown

_1167504985.unknown

_1167504906.unknown

_1167504551.unknown

_1167504647.unknown

_1167504726.unknown

_1167504621.unknown

_1167504435.unknown

_1167504508.unknown

_1167504407.unknown

_1167503629.unknown

_1167504054.unknown

_1167504180.unknown

_1167504270.unknown

_1167504103.unknown

_1167503998.unknown

_1167504033.unknown

_1167503697.unknown

_1167503828.unknown

_1167423521.unknown

_1167503509.unknown

_1167503593.unknown

_1167503439.unknown

_1167423444.unknown

_1167423515.unknown

_1167423437.unknown

_1167421748.unknown

_1167422917.unknown

_1167423192.unknown

_1167423269.unknown

_1167423364.unknown

_1167423257.unknown

_1167423009.unknown

_1167423185.unknown

_1167423005.unknown

_1167422567.unknown

_1167422768.unknown

_1167422807.unknown

_1167422670.unknown

_1167422680.unknown

_1167422574.unknown

_1167422345.unknown

_1167422464.unknown

_1167421811.unknown

_1167404085.unknown

_1167421364.unknown

_1167421644.unknown

_1167421717.unknown

_1167421561.unknown

_1167421341.unknown

_1167421361.unknown

_1167404263.unknown

_1167403886.unknown

_1167403991.unknown

_1167404078.unknown

_1167403936.unknown

_1167403777.unknown

_1167403830.unknown

_1167403726.unknown

_1167309693.unknown

_1167337466.unknown

_1167338232.unknown

_1167403225.unknown

_1167403483.unknown

_1167403602.unknown

_1167403589.unknown

_1167403377.unknown

_1167403324.unknown

_1167338501.unknown

_1167339039.unknown

_1167338283.unknown

_1167337990.unknown

_1167338136.unknown

_1167338197.unknown

_1167338088.unknown

_1167337798.unknown

_1167337912.unknown

_1167337704.unknown

_1167336812.unknown

_1167337159.unknown

_1167337301.unknown

_1167337372.unknown

_1167337247.unknown

_1167337040.unknown

_1167337111.unknown

_1167336940.unknown

_1167336512.unknown

_1167336624.unknown

_1167336681.unknown

_1167336569.unknown

_1167309900.unknown

_1167336407.unknown

_1167309779.unknown

_1167309899.unknown

_1167248616.unknown

_1167251496.unknown

_1167309458.unknown

_1167309600.unknown

_1167309638.unknown

_1167309506.unknown

_1167309375.unknown

_1167309387.unknown

_1167251739.unknown

_1167251192.unknown

_1167251364.unknown

_1167251424.unknown

_1167251240.unknown

_1167250764.unknown

_1167250914.unknown

_1167250615.unknown

_1167068506.unknown

_1167068952.unknown

_1167248519.unknown

_1167248576.unknown

_1167069150.unknown

_1167073457.unknown

_1167068770.unknown

_1167068803.unknown

_1167068611.unknown

_1167068053.unknown

_1167068307.unknown

_1167068325.unknown

_1167068072.unknown

_1166985946.unknown

_1167067892.unknown

_1166988511.unknown

_1166900004.unknown

_1166903109.unknown

_1166899091.unknown

