Re: CCL:Summary of "rotating a density matrix"
- From: Aldert Westra Hoekzema <aldert ^at^
chemde5.LeidenUniv.nl>
- Subject: Re: CCL:Summary of "rotating a density
matrix"
- Date: Fri, 23 Aug 2002 10:25:25 +0200 (METDST)
Hi Thomas,
I have not read the articles you mention, but solved the problem
of rotating d-functions (6D set) myself around 1993. Below you
can find the relevant comment cut from a fortran77 program.
Expanding to f-functions (10F set) should be analogous, probably
including the normalization pecularity (see below).
Kind greetings, Aldert
A.J.A. Westra Hoekzema
Leiden Institue of Chemistry
The Netherlands
*----------------------------------------------------------------------
* ROTATE D-FUNCTIONS (LOCATED IN THE ORIGIN)
*
* IDENTIFY THE SET OF 6 D-FUNCTIONS WITH A TWO-DIMENSIONAL TENSOR:
* D(XX) = T(1,1) D(XY) = T(1,2) + T(2,1)
* D(YY) = T(2,2) D(XZ) = T(1,3) + T(3,1)
* D(ZZ) = T(3,3) D(YZ) = T(2,3) + T(3,2)
* WHERE T(I,J) INDICATES A 3X3 TENSOR WITH ELEMENT (I,J) EQUAL TO 1
* AND THE OTHER EIGHT ELEMENTS EQUAL TO 0
*
* A ROTATED TENSOR GIVEN IN TERMS OF THE ORIGINAL TENSOR ELEMENTS
* DEPENDS ON THE ROTATION-MATRIX R:
* 3 3
* ROT T(I,J) = SUM SUM R(I,K) R(J,L) T(K,L)
* K=1 L=1
*
* WITH R(K,I) = PARTIAL DERIVATIVE OF ROTATED CARTESIAN TO OLD ONE
*
* AFTER ROTATION A GENERAL COMBINATION OF D-FUNCTIONS PHI RESULTS IN
* A COMBINATION EXPRESSED IN TERMS OF THE ORIGINAL COEFFICIENTS:
*
* PHI = SUM SUM C(IJ) D(IJ)
* I <= J
*
* PHI' = ROT PHI = ROT SUM SUM C(IJ) D(IJ) = SUM SUM C(IJ) D(IJ)' =
* I <= J I <= J
*
* SUM SUM C(IJ) SUM SUM R(I,K) R(J,L) T(K,L) =
* I <= J K L
*
* SUM SUM SUM SUM C(IJ) { R(I,K) R(J,L) + { DELTA(K,L) - 1 }
* K <= L I <= J R(I,L) R(J,K) } D(KL)
*
* WITH DELTA THE KRONECKER DELTA
*
* USING THE 6-D SET OF D-FUNCTIONS THERE IS ANOTHER PECULARITY. THE
* NORMALIZATION FACTORS DIFFER BETWEEN D(XX/YY/ZZ) AND D(XY/XZ/YZ):
*
* N(II) = (1/9) TO THE POWER (1/4) TIMES N(IJ) , J /= I
*
* THIS INTRODUCES A FACTOR IN THE ROTATED COMBINATION:
*
* PHI' = SUM SUM SUM SUM C(IJ) { R(I,K) R(J,L) + { DELTA(K,L) - 1 }
* K <= L I <= J R(I,L) R(J,K) } D(KL) F(IJ,KL)
*
* WITH F: II --> KK = 1 , II --> KL = SQRT(3) ,
* IJ --> KL = 1 , IJ --> KK = 1 / SQRT(3) , FOR EXAMPLE:
*
* ROT DIJ <=> ROT ( N(IJ) IJ EXP ) = .. + N(IJ) KK EXP <=>
*
* SQRT(3) / SQRT(3) N(IJ) KK EXP <=> SQRT(3) N(KK) KK EXP
*
* A GENERAL EXPRESSION:
*
* F(IJ,KL) = 1 + DELTA(I,J) { 1 - DELTA(K,L) } { 1 / SQRT(3) - 1 }
*
* + DELTA(K,L) { 1 - DELTA(I,J) } { SQRT(3) - 1 }
*
* REFERENCES: -D.E. BOURNE AND P.C. KENDALL,
* VECTOR ANALYSIS AND CARTESIAN TENSORS, 2ND ED.,
* NELSON, 1980
* -GEORGE ARFKEN,
* MATHEMATICAL METHODS FOR PHYSICISTS, 2ND ED.,
* ACADEMIC PRESS, 1970
* -W.J. HEHRE, L. RADOM, P.V.R. SCHLEYER & J.A. POPLE,
* AB INITIO MOLECULAR ORBITAL THEORY, 1986, P19
*----------------------------------------------------------------------
> From chemistry-request ^at^ ccl.net Fri Aug 23 09:10:08 2002
> From: Thomas Exner <exner ^at^ pc.chemie.tu-darmstadt.de>
>
> Hi CCLers,
>
> I have an additional question to the rotation of the density matrix. I
> accounted some difficulties while implementing the rotation of the d
> orbitals as discribed by Ferre et al. (J.Comp.Chem. 23(6) 2002, 610-624)
> and Philipp and Friesner (J.Comp.Chem. 20(14) 1999, 1468-1494). I think
> I found one error in the equation in the second paper. But because I
> don't really understand how the rotation matrix is affiliated, it is
> impossible for me to figure out if there are any other errors in the
> equation or if it is a problem with my implementation. I would
> appriciate if someone could give me some hints how the rotation matrix
> has to be constructed. Perhaps, this could also help me to construct a
> rotation matrix for f orbital. Thank you very much.
>
> Best wishes,
> Thomas
>
> --
> ____________________________________________________________________
>
> Dr. Thomas Exner
> Computational, Theoretical & Mathematical Chemistry
> Department of Chemistry
> University of Saskatchewan
> 110 Science Place 431 Edmund Park
> Saskatoon, SK, S7N 5C9 Saskatoon, SK, S7H 0Z4
> Canada Canada
>
> phone: +1-306-966-5357 +1-306-382-5397
> fax: +1-306-966-4730
>
>
> Department of Physical Chemistry
> Physical Chemistry I
> Darmstadt University of Technology (TUD)
> Petersenstr. 20 Auf der Marienhoehe 5
> 64287 Darmstadt 64297 Darmstadt
> Germany Germany
>
> phone: +49-6151-16 2398 +49-6151-537165
> fax: +49-6151-16 4298
> e-mail: exner ^at^ pc.chemie.tu-darmstadt.de texner ^at^ gmx.net
> WWW: http://www.pc.chemie.tu-darmstadt.de/staff/exner/
> ____________________________________________________________________
>
>
> -= This is automatically added to each message by mailing script =-
> CHEMISTRY ^at^ ccl.net -- To Everybody | CHEMISTRY-REQUEST ^at^ ccl.net --
To Admins
> Ftp: ftp.ccl.net | WWW: http://www.ccl.net/chemistry/ | Jan: jkl ^at^ ccl.net